Fungal tRNA ligase (Trl1) rectifies RNA breaks with 2',3'-cyclic-PO4 and 5'-OH termini. Trl1 consists of three catalytic modules: an N-terminal ligase (LIG) domain; a central polynucleotide kinase (KIN) domain; and a C-terminal cyclic phosphodiesterase (CPD) domain. Trl1 enzymes found in all human fungal pathogens are untapped targets for antifungal drug discovery. Here we report a 1.9 Å crystal structure of Trl1 KIN-CPD from the pathogenic fungus Candida albicans, which adopts an extended conformation in which separate KIN and CPD domains are connected by an unstructured linker. CPD belongs to the 2H phosphotransferase superfamily by dint of its conserved central concave β sheet and interactions of its dual HxT motif histidines and threonines with phosphate in the active site. Additional active site motifs conserved among the fungal CPD clade of 2H enzymes are identified. We present structures of the Candida Trl1 KIN domain at 1.5 to 2.0 Å resolution-as apoenzyme and in complexes with GTP•Mg2+, IDP•PO4, and dGDP•PO4-that highlight conformational switches in the G-loop (which recognizes the guanine base) and lid-loop (poised over the nucleotide phosphates) that accompany nucleotide binding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7145591 | PMC |
http://dx.doi.org/10.1093/nar/gkz1049 | DOI Listing |
Lancet HIV
January 2025
Stichting HIV Monitoring, Amsterdam, Netherlands; Department of Infectious Diseases, Amsterdam Infection & Immunity Institute, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, Netherlands.
Background: Real-world data showing the long-term effectiveness of long-acting injectable cabotegravir and rilpivirine are scarce. We assessed the effectiveness of cabotegravir and rilpivirine in all individuals who switched to cabotegravir and rilpivirine in the Netherlands.
Methods: We used data from the ATHENA cohort, an ongoing observational nationwide HIV cohort in the Netherlands.
Environ Microbiol
January 2025
Research Group Insect Gut Microbiology and Symbiosis, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
Cellulolytic flagellates are essential for the symbiotic digestion of lignocellulose in the gut of lower termites. Most species are associated with host-specific consortia of bacterial symbionts from various phyla. 16S rRNA-based diversity studies and taxon-specific fluorescence in situ hybridization revealed a termite-specific clade of Actinomycetales that colonise the cytoplasm of Trichonympha spp.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.
Thiolation, a post-transcriptional modification catalyzed by Uba4-Urm1-Ncs2/Ncs6 pathway in three specific transfer RNAs (tRNAs), is conserved from yeast to humans and plays an important role in enhancing codon-anticodon interaction and translation efficiency. Yet, except for affecting effector secretion, its roles in plant pathogenic fungi are not fully understood. Here, we used Magnaporthe oryzae as a model system to illustrate the vital role of s2U34 modification on the appressorium-mediated virulence.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Division of Pharmacoengineering and Molecular Pharmaceutics, The University of North Carolina at Chapel Hill, 125 Mason Farm Rd. Chapel Hill, NC 27599, USA.
Whole genome codon compression-the reassignment of all instances of a specific codon to synonymous codons-can generate organisms capable of tolerating knockout of otherwise essential transfer RNAs (tRNAs). As a result, such knockout strains enable numerous unique applications, such as high-efficiency production of DNA encoding extremely toxic genes or non-canonical proteins. However, achieving stringent control over protein expression in these organisms remains challenging, particularly with proteins where incomplete repression results in deleterious phenotypes.
View Article and Find Full Text PDFmSystems
January 2025
Department of Infectious Diseases, School of Translational Medicine, Monash University, Melbourne, Victoria, Australia.
Unlabelled: Sequencing DNA directly from patient samples enables faster pathogen characterization compared to traditional culture-based approaches, but often yields insufficient sequence data for effective downstream analysis. CRISPR-Cas9 enrichment is designed to improve the yield of low abundance sequences but has not been thoroughly explored with Oxford Nanopore Technologies (ONT) for use in clinical bacterial epidemiology. We designed CRISPR-Cas9 guide RNAs to enrich the human pathogen , by targeting multi-locus sequence type (MLST) and transfer RNA (tRNA) genes, as well as common antimicrobial resistance (AMR) genes and the resistance-associated integron gene .
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!