A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Early-Life Iron Deficiency and Its Natural Resolution Are Associated with Altered Serum Metabolomic Profiles in Infant Rhesus Monkeys. | LitMetric

Background: Iron deficiency is the most common nutrient deficiency in human infants aged 6 to 24 mo, and negatively affects many cellular metabolic processes, including energy production, electron transport, and oxidative degradation of toxins. There can be persistent influences on long-term metabolic health beyond its acute effects.

Objectives: The objective was to determine how iron deficiency in infancy alters the serum metabolomic profile and to test whether these effects persist after the resolution of iron deficiency in a nonhuman primate model of spontaneous iron deficiency.

Methods: Blood was collected from naturally iron-sufficient (IS; n = 10) and iron-deficient (ID; n = 10) male and female infant rhesus monkeys (Macaca mulatta) at 6 mo of age. Iron deficiency resolved without intervention upon feeding of solid foods, and iron status was re-evaluated at 12 mo of age from the IS and formerly ID monkeys using hematological and other indices; sera were metabolically profiled using HPLC/MS and GC/MS with isobaric standards for identification and quantification at both time points.

Results: A total of 413 metabolites were measured, with differences in 40 metabolites identified between IS and ID monkeys at 6 mo (P$\le $ 0.05). At 12 mo, iron-related hematological parameters had returned to normal, but the formerly ID infants remained metabolically distinct from the age-matched IS infants, with 48 metabolites differentially expressed between the groups. Metabolomic profiling indicated altered liver metabolites, differential fatty acid production, increased serum uridine release, and atypical bile acid production in the ID monkeys.

Conclusions: Pathway analyses of serum metabolites provided evidence of a hypometabolic state, altered liver function, differential essential fatty acid production, irregular uracil metabolism, and atypical bile acid production in ID infants. Many metabolites remained altered after the resolution of ID, suggesting long-term effects on metabolic health.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7138653PMC
http://dx.doi.org/10.1093/jn/nxz274DOI Listing

Publication Analysis

Top Keywords

iron deficiency
20
acid production
16
serum metabolomic
8
infant rhesus
8
rhesus monkeys
8
metabolic health
8
infants metabolites
8
altered liver
8
fatty acid
8
atypical bile
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!