The brain faces the difficult task of maintaining a stable representation of key features of the outside world in noisy sensory surroundings. How does the sensory representation change with noise, and how does the brain make sense of it? We investigated the effect of background white noise (WN) on tuning properties of neurons in mouse A1 and its impact on discrimination performance in a go/no-go task. We find that WN suppresses the activity of A1 neurons, which surprisingly increases the discriminability of tones spectrally close to each other. To confirm the involvement of A1, we optogenetically excited parvalbumin-positive (PV) neurons in A1, which have similar effects as WN on both tuning properties and frequency discrimination. A population model suggests that the suppression of A1 tuning curves increases frequency selectivity and thereby improves discrimination. Our findings demonstrate that the cortical representation of pure tones adapts during noise to improve sensory acuity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.celrep.2019.10.049 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!