Pluripotent embryonic stem cells (ESCs) constitute an essential cellular niche sustained by epigenomic and transcriptional regulation. Any role of post-transcriptional processes remains less explored. Here, we identify a link between nuclear RNA levels, regulated by the poly(A) RNA exosome targeting (PAXT) connection, and transcriptional control by the polycomb repressive complex 2 (PRC2). Knockout of the PAXT component ZFC3H1 impairs mouse ESC differentiation. In addition to the upregulation of bona fide PAXT substrates, Zfc3h1 cells abnormally express developmental genes usually repressed by PRC2. Such de-repression is paralleled by decreased PRC2 binding to chromatin and low PRC2-directed H3K27 methylation. PRC2 complex stability is compromised in Zfc3h1 cells with elevated levels of unspecific RNA bound to PRC2 components. We propose that excess RNA hampers PRC2 function through its sequestration from DNA. Our results highlight the importance of balancing nuclear RNA levels and demonstrate the capacity of bulk RNA to regulate chromatin-associated proteins.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6856724PMC
http://dx.doi.org/10.1016/j.celrep.2019.10.011DOI Listing

Publication Analysis

Top Keywords

nuclear rna
12
link nuclear
8
transcriptional control
8
polycomb repressive
8
repressive complex
8
rna levels
8
zfc3h1 cells
8
rna
7
prc2
6
functional link
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!