Objective: To investigate the mechanism of the participation of osteocytes in the formation of osteoclasts under hypoxia.
Methods: The hypoxia culture system of osteocyte-like cell line MLO-Y4 was established by deferoxamine mesylate (DFO) in vitro. The proliferation of MLO-Y4 cells was examined by CCK-8 cell proliferation/toxicity assay. RAW264.7 cells were induced to osteoclasts by the conditioned medium containing the cultured MLO-Y4. Tartrate-resistant acid phosphatase (TRAP) staining was performed on day 7. Quantitative real-time fluorescence polymerase chain reaction, immunofluorescence, and Western blot were used to detect the expression levels of hypoxia-inducible factor (HIF)-1α and receptor activator of nuclear factor-κB ligand (RANKL) in MLO-Y4 under hypoxia. The effects of siHIF-1α on the expression levels of HIF-1α and RANKL in MLO-Y4 under the same conditions were detected.
Results: DFO (100 μmol·L⁻¹) promoted the proliferation of MLO-Y4 at 24 h, which decreased with time (P<0.01). After the addition of soluble sRANKL, the formation of osteoclasts was significantly increased in the DFO group (P<0.001). The expression of RANKL mRNA in MLO-Y4 under 100 μmol·L⁻¹ DFO increased first and then decreased with the duration of hypoxia. This expression reached a peak at 24 h (P<0.01). Hypoxia up-regulated the expression of HIF-1α and RANKL protein (P<0.01). Under hypoxia, siHIF-1α downregulated the expression of HIF-1α and RANKL (P<0.01). siHIF-1α also decreased the number of osteoclasts (P<0.01).
Conclusions: Under hypoxia, MLO-Y4 could facilitate the formation of RANKL through upre-gulating the expression of HIF-1α protein, thereby accelerate the differentiation of RAW264.7 cells into osteoclasts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7030417 | PMC |
http://dx.doi.org/10.7518/hxkq.2019.05.002 | DOI Listing |
J Orthop Surg Res
January 2025
Medical Physiology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt.
Background: Castration of adult male rats led to the development of osteoporosis. Oxidative stress and inflammatory factors have been identified as potential causative factors. Notably, oxymatrine (OMT) possesses potent anti-inflammatory and antioxidant activities.
View Article and Find Full Text PDFBMC Complement Med Ther
December 2024
Pediatric Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, P.O. Box, Shiraz, 71345-1744, Iran.
Background: L-arginine (Arg) is a semi-essential amino acid that can be used as a key mediator for the release of growth hormone (GH), insulin-like growth factor-1(IGF-1), and other growth factors. In this study, we comprehensively evaluated the effect of Arg intake on bone growth and associated markers.
Methods: The study involved 24 Sprague-Dawley rats (12 males, 12 females) divided into two groups (Age = 24 days).
J Transl Med
December 2024
Hand and Foot Surgery Department, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University), 3002 Sungang West Road, Shenzhen, 518000, China.
The bone marrow niche is a special microenvironment that comprises elements, including hematopoietic stem cells, osteoblasts, and endothelial cells, and helps maintain their characteristic functions. Here, we elaborate on the crosstalk between various cellular components, hematopoietic stem cells, and other cells in the bone marrow niche. We further explain the mechanism of preserving equilibrium in the bone marrow niche, which is crucial for the directional regulation of bone reconstruction and repair.
View Article and Find Full Text PDFJ Anim Sci Biotechnol
December 2024
Department of Animal Sciences and Aquatic Ecology, Laboratory for Animal Nutrition and Animal Product Quality, Ghent University, Ghent, 9000, Belgium.
Background: Heat stress (HS) incidence is associated with the accumulation of reactive substances, which might be associated with bone loss. N-Acetylcysteine (NAC) exhibits strong antioxidants due to its sulfhydryl group and being as the precursor for endogenous glutathione synthesis. Therefore, interplay between oxidative stress and bone turnover of broilers and the effects of dietary NAC inclusion on antioxidant capability and "gut-bone" axis were evaluated during chronic HS.
View Article and Find Full Text PDFSci Rep
November 2024
Paris Cité University CNRS INSERM, B3OA, UMR 7052, U 1271, 10 avenue de Verdun, Paris, 75010, France.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!