LncRNA BC088259 promotes Schwann cell migration through Vimentin following peripheral nerve injury.

Glia

Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.

Published: March 2020

Schwann cell, the major glial cell in the peripheral nervous system, plays an essential role in peripheral nerve regeneration. However, the regulation of Schwann cell behavior following nerve injury is insufficiently explored. According to the development of high-throughput techniques, long noncoding RNAs (lncRNAs) have been recognized. Accumulating evidence shows that lncRNAs take part in diverse biological processes and diseases. Here, by microarray analysis, we identified an upregulated lncRNA profile following sciatic nerve injury and focused on BC088259 for further investigation. Silencing or overexpression of BC088259 could affect Schwann cell migration. Mechanistically, BC088259 might exert this regulatory role by directly binding with Vimentin. Collectively, our study not only revealed a set of upregulated lncRNAs following nerve injury but also identified a new functional lncRNA, BC088259, which was important for Schwann cell migration, providing a therapeutic avenue toward peripheral nerve injury.

Download full-text PDF

Source
http://dx.doi.org/10.1002/glia.23749DOI Listing

Publication Analysis

Top Keywords

schwann cell
20
nerve injury
20
cell migration
12
peripheral nerve
12
lncrna bc088259
8
cell
6
nerve
6
schwann
5
injury
5
bc088259 promotes
4

Similar Publications

Background: Optic nerve schwannomas are an extremely rare pathology in neurosurgery. Their origin is rather debatable given the structure of the optic nerve, which does not typically have Schwann cells therein. However, a number of clinical cases of optic nerve tumors classified as schwannomas have been described in the literature.

View Article and Find Full Text PDF

Seipin Deficiency Impairs Motor Coordination in Mice by Compromising Spinal Cord Myelination.

Neuromolecular Med

January 2025

Department of Anatomy, School of Basic Medical Sciences, Shanxi Medical University, No 56, Xinjian Nan Road, Taiyuan, 030001, Shanxi, China.

The integrity of the myelin sheath of the spinal cord (SC) is essential for motor coordination. Seipin is an endoplasmic reticulum transmembrane protein highly expressed in adipose tissue and motor neurons in the SC. It was reported Seipin deficiency induced lipid dysregulation and neurobehavioral deficits, but the underlying mechanism, especially in SC, remains to be elucidated.

View Article and Find Full Text PDF

Schwann cells (SCs) hold key roles in axonal function and maintenance in the peripheral nervous system (PNS) and are a critical component to the regeneration process following trauma. Following PNS trauma, SCs respond to both physical and chemical signals to modify phenotype and assist in the regeneration of damaged axons and extracellular matrix (ECM). There is currently a lack of knowledge regarding the SC response to dynamic, temporal changes in the ECM brought on by swelling and the development of scar tissue as part of the body's wound-healing process.

View Article and Find Full Text PDF

Dual-sided centripetal microgrooved poly (D,L-lactide-co-caprolactone) disk encased in immune-regulating hydrogels for enhanced bone regeneration.

Mater Today Bio

February 2025

China Uruguay Bio-Nano Pharmaceutical Joint Laboratory, Institute of Neuroregeneration and Neurorehabilitation, Qingdao University, 308 Ningxia Road, Qingdao, 266071, Shandong, China.

Well-designed artificial scaffolds are urgently needed due to the limited self-repair capacity of bone, which hampers effective regeneration in critical defects. Optimal scaffolds must provide physical guidance to recruit cells and immune regulation to improve the regenerative microenvironment. This study presents a novel scaffold composed of dual-sided centripetal microgrooved poly(D,L-lactide-co-caprolactone) (PLCL) film combined with a dynamic hydrogel containing prednisolone (PLS)-loaded Prussian blue nanoparticles (PB@PLS).

View Article and Find Full Text PDF

Schwann cells (SCs) can potentially transform into the repair-related cell phenotype after injury, which can promote nerve repair. Ferroptosis occurs in the SCs of injured tissues, causing damage to the SCs and exacerbating nerve injury. Targeting ferroptosis in SCs is a promising therapeutic strategy for effective repair; however, research on ferroptosis in the peripheral nervous system remains limited.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!