The study was performed in a mountainous area of approximately 7000 sq. km of Western Tajikistan, i.e., Turkestan, Zeravshan, Hissar, and Karateghin ridges that are characterized by complex geological settings. Moss biomonitoring was used to assess the concentration level of trace and major elements in atmospheric deposition of the study area. Hylocomium splendens (Hedw.) Schimp. moss was used as biomonitor in this study. 43 major and trace-elements were determined by Epithermal Neutron Activation (ENAA) and Atomic Absorption Spectrometry (AAS). GIS maps of the 43 elements showed that the distribution of Mo, Cd, REE, Th, and U could be most probably associated with the Odjuk pegmatite field. Zr, Hf, and W contents are significantly increased in the vicinity of the Sarbo River washout while Cr, Co, Ni, and As showed a maximum content near Kanchoch gold field. The global pollution index based on the local content of presumed pollutants Cr, Ni, Cu, Zn, As, Cd, Sb, and Pb in some places exceeded the threshold limits for a pristine, unpolluted environment. At the same time, the distribution of incompatible Sc, La, Yb, and Th suggested for the airborne material deposited on mosses a continental component, enriched in few places in felsic components.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00244-019-00687-wDOI Listing

Publication Analysis

Top Keywords

atmospheric deposition
8
western tajikistan
8
hylocomium splendens
8
investigations atmospheric
4
deposition major
4
major trace
4
trace elements
4
elements western
4
tajikistan hylocomium
4
splendens moss
4

Similar Publications

Cupric oxide (CuO) is a promising p-type semiconducting oxide used in many critical fields, such as energy conversion and storage, and gas sensors, which is attributed to its unique optoelectrical properties and cost-effectiveness. This work successfully deposited amorphous, pinhole-free, ultrathin CuO films using atmospheric pressure spatial atomic layer deposition (SALD) with copper(II) acetylacetonate and ozone as precursors. The growth rate increased from 0.

View Article and Find Full Text PDF

Population variation in fatty acid composition and response to climatic factors in Malania oleifera Chun et S.K. Lee.

BMC Plant Biol

January 2025

Key Laboratory of National Forestry and Grassland Administration on Plant Ex Situ Conservation, Beijing Floriculture Engineering Technology Research Centre, Beijing Botanical Garden, Beijing, 100093, China.

Malania oleifera Chun et S.K. Lee is a woody oil tree species and is rich in nervonic acid, which is associated with brain development.

View Article and Find Full Text PDF

Understanding the composition of mercury (Hg) in the atmosphere is important for confirming its sources and to preventing and reduce the production. To explore the morphological distribution characteristics of wet Hg concentrations in Xi'an Shaanxi Province, China, total Hg (THg), dissolved Hg (DTHg), reactive Hg (RTHg) and particulate-bound Hg (PTHg) (Hg insoluble in water) were measured at 72 precipitation in Xi'an from September 2020 to July 2022, and their average concentrations were 3.035 ± 3.

View Article and Find Full Text PDF

This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.

View Article and Find Full Text PDF

Interaction of micro and nanoplastics (MNPs) with agricultural stored products and their pests.

Sci Total Environ

January 2025

Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China. Electronic address:

Micro and nanoplastics (MNPs) pose significant environmental concerns due to their potential implications for ecosystems and human health. While previous research has primarily focused on the environmental impacts (aquatic ecosystem, soil health) of MNPs, this review investigates their interactions with agricultural stored products, specifically their effects on stored product pests and grain quality. MNPs can infiltrate grains through various pathways, including atmospheric deposition, plastic residues from cultivation, and pest activity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!