The addition of aldehyde enamines to nitroalkenes affords cyclobutanes in all solvents, with all of the pyrrolidine and proline derivatives tested by us and with all of the substrates we have examined. Depending on the temperature, concentration of water, solvent polarity, and other factors, the opening and hydrolysis of such a four-membered ring may take place rapidly or last for several days, producing the final Michael-like adducts (4-nitrobutanals). Thirteen new cyclobutanes have now been characterized by NMR spectroscopy. As could be expected, s--enamine conformers give rise to all-(4)-4-nitrocyclobutylpyrrolidines, while s--enamine conformers afford all-(4)-4-nitrocyclobutylpyrrolidines. These four-membered rings can isomerize to adduct enamines, which should be hydrolyzed via their iminium ions. MP2 and M06-2X calculations predict that one iminium ion is more stable than the other iminium species, so that protonation of the adduct enamines can be quite stereoselective; in the presence of water, the so-called syn adducts (e.g., OCH-*CHR-*CHPh-CHNO, with R and Ph syn) eventually become the major products. Why one syn adduct is obtained with aldehydes, whereas cyclic ketones (the predicted ring-fused cyclobutanes of which isomerize to their enamines more easily) produce the other syn adduct, is also explained by means of molecular orbital calculations. Nitro-Michael reactions of aldehyde enamines that "stop" at the nitrocyclobutane stage and final enamine stage do not work catalytically, as known, but those of cyclic ketone enamines that do not work stop at the final enamine stage (if their hydrolysis to the corresponding nitroethylketones is less favorable than expected). These and other facts are accounted for, and the proposals of the groups led by Seebach and Hayashi, Blackmond, and Pihko and Papai are reconciled.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6844152 | PMC |
http://dx.doi.org/10.1021/acsomega.9b02074 | DOI Listing |
Org Biomol Chem
June 2024
Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran.
Bromonitroalkenes are useful molecules in synthetic organic chemistry. They are mainly prepared from nitroalkenes bromination reactions. In this review, the application of bromonitroalkenes as partners in the reaction with a diversity of mono- and bi-functional molecules, including aldehydes and ketones, active methylene compounds, 1,2-dicarbonyls, enamines, enols, electron-rich arenes, amidines, azomethine ylides, azirines, diazo compounds, and many others, is reviewed.
View Article and Find Full Text PDFOrg Biomol Chem
March 2023
Faculty of Chemistry, Kharazmi University, 49 Mofateh St, 15719-14911, Tehran, Iran.
The applications of 2-hydroxy-β-nitrostyrenes as efficient bifunctional intermediates in organic synthesis are investigated in this review. For this purpose, reactions of 2-hydroxy-β-nitrostyrenes with diverse molecules, including carbonyl compounds, 1,3-dicarbonyl compounds, α,β-unsaturated carbonyl compounds, hemiacetals, nitroalkenes, γ-butenolides, tetronic acid, azalactones, pyrazolones, enamines, malononitrile, methyleneindolinones, ylides, , were investigated to construct interesting biologically active scaffolds such as chromans, chromenes, coumarins, benzofurans and their fused and spiro rings, natural products, and other useful cyclic and acyclic compounds. The main focus is on the asymmetric synthesis of these compounds cascade/domino/tandem reactions catalyzed by chiral organocatalysts.
View Article and Find Full Text PDFJ Phys Chem A
August 2022
Department of Chemistry, University of California, Irvine, California 92697-2025, United States.
Emerging contaminants are of concern due to their rapidly increasing numbers and potential ecological and human health effects. In this study, the synergistic effects of the presence of multifunctional nitro, amino and carbon-carbon double bond (C═C) groups on the gas phase ozonolysis in O or at the air/solid interface were investigated using five simple model compounds. The gas phase ozonolysis rate constants at 296 K were (3.
View Article and Find Full Text PDFChemistry
April 2022
Department of Physical and Chemical Sciences, Università degli Studi dell'Aquila, via Vetoio, 67100, L'Aquila, Italy.
The development of an enantioselective enamine-catalysed addition of masked acetaldehyde to nitroalkenes via a rational approach helped to move away from the use of chloroform. The presented research allows the use of water as a reaction medium, therefore improving the industrial relevance of a protocol to access very important pharmaceutical intermediates. Critical to the success is the use of chemometrics-assisted 'Design of Experiments' (DoE) optimisation during the development of the presented new synthetic approach, which allows to investigate the chemical space in a rational way.
View Article and Find Full Text PDFChembiochem
March 2022
Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713 AV, Groningen, The Netherlands.
The blockbuster drug Pregabalin is widely prescribed for the treatment of painful diabetic neuropathy. Given the continuous epidemic growth of diabetes, the development of sustainable synthesis routes for Pregabalin and structurally related pharmaceutically active γ-aminobutyric acid (GABA) derivatives is of high interest. Enantioenriched γ-nitroaldehydes are versatile synthons for the production of GABA derivatives, which can be prepared through a Michael-type addition of acetaldehyde to α,β-unsaturated nitroalkenes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!