Biopharmaceutical industrial processes are based on high yielding stable recombinant Chinese Hamster Ovary (CHO) cells that express monoclonal antibodies. However, the process and feeding regimes need to be adapted for each new cell line, as they all have a slightly different metabolism and product performance. A main limitation for accelerating process development is that the metabolic pathways underlying this physiological variability are not yet fully understood. This study describes the evolution of intracellular fluxes during the process for 4 industrial cell lines, 2 high producers and 2 low producers ( = 3), all of them producing a different antibody. In order to understand from a metabolic point of view the phenotypic differences observed, and to find potential targets for improving specific productivity of low producers, the analysis was supported by a tailored genome-scale model and was validated with enzymatic assays performed at different days of the process. A total of 59 reactions were examined from different key pathways, namely glycolysis, pentose phosphate pathway, TCA cycle, lipid metabolism, and oxidative phosphorylation. The intracellular fluxes did not show a metabolic correlation between high producers, but the degree of similitude observed between cell lines could be confirmed with additional experimental observations. The whole analysis led to a better understanding of the metabolic requirements for all the cell lines, allowed to the identification of metabolic bottlenecks and suggested targets for further cell line engineering. This study is a successful application of a curated genome-scale model to multiple industrial cell lines, which makes the metabolic model suitable for process platform.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6838488PMC
http://dx.doi.org/10.1016/j.mec.2019.e00097DOI Listing

Publication Analysis

Top Keywords

cell lines
16
genome-scale model
12
identification metabolic
8
intracellular fluxes
8
industrial cell
8
high producers
8
low producers
8
metabolic
7
cell
7
producers
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!