LY2228820 induces synergistic anti-cancer effects with anti-microtubule chemotherapeutic agents independent of P-glycoprotein in multidrug resistant cancer cells.

Am J Cancer Res

Department of Surgery, Division of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University Hangzhou 310000, Zhejiang Province, China.

Published: October 2019

Side-effects and resistance substantially limit the efficacy of chemotherapy. One possible solution to this persistent problem would be co-administration of targeted therapy and chemotherapy to achieve synergistic anti-cancer effects without extra toxicity. Here, we reported that LY2228820, a selective inhibitor of p38-MAPK signaling pathway, could induce synergistic anti-cancer effects with anti-microtubule (AMT) chemotherapy both and . In drug-resistant cancer cells, treatment with either LY2228820 or AMT drug alone was compatible with viability, while co-administration of both led to dramatic cytotoxicity, G2/M arrest and apoptosis. Moreover, co-treatment with LY2228820 notably improved the effectiveness of paclitaxel without exhibiting adverse effects . Mechanistic studies showed that LY2228820 sensitized cancer cells to AMT agents independent of P-gp. LY2228820 did not influence either the expression or the function of P-gp. Instead, it could inhibit p38-HSP27 signaling axis by down-regulating p-HSP27. Furthermore, LY2228820 blocked the p-HSP27 mediated protective response against AMT drugs in tumor cells, resulting in mitochondrial instability and the activation of mitochondrial death pathways. This P-gp-independent regime containing LY2228820 and AMT agents could produce synergistic anti-cancer effects without extra systematic toxicity. Our study offers a novel strategy for improving the therapeutic efficacy of AMT drugs by achieving a better balance between efficacy and toxicity. This new combination regime could be advantageous in patients who show little response to the maximal dosage of AMT chemotherapy, as well as those unable to tolerate the systematic toxicity of these agents in clinic.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6834474PMC

Publication Analysis

Top Keywords

synergistic anti-cancer
16
anti-cancer effects
16
cancer cells
12
ly2228820
8
effects anti-microtubule
8
agents independent
8
effects extra
8
amt chemotherapy
8
ly2228820 amt
8
amt agents
8

Similar Publications

Radiotherapy is a powerful tumor therapeutic strategy for gastric cancer patients. However, radioresistance is a major obstacle to kill cancer cells. Ginger ( Roscoe) exerts a potential function in various cancers and is a noble combined therapy to overcome radioresistance in gastric cancer radiotherapy.

View Article and Find Full Text PDF

Breast cancer is the most common type of cancer in women worldwide. A common approach to cancer treatment in clinical practice is to use a combination of drugs to enhance the anticancer activity of drugs while reducing their side effects. In this regard, we evaluated the effectiveness of combined treatment with gemcitabine (GCB) and arsenic (ATO) and how they affect the cell death pathway in cancer cells.

View Article and Find Full Text PDF

: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are a class of E3 ubiquitin ligases that actively function to support cancer growth and survival.

View Article and Find Full Text PDF

Loss of function screens using shRNA (short hairpin RNA) and CRISPR (clustered regularly interspaced short palindromic repeats) are routinely used to identify genes that modulate responses of tumor cells to anti-cancer drugs. Here, by integrating GSEA (Gene Set Enrichment Analysis) and CMAP (Connectivity Map) analyses of multiple published shRNA screens, we identified a core set of pathways that affect responses to multiple drugs with diverse mechanisms of action. This suggests that these pathways represent "weak points" or "Achilles heels", whose mild disturbance should make cancer cells vulnerable to a variety of treatments.

View Article and Find Full Text PDF

The anti-cancer potential of eugenol (EUG) is well recognized, whereas that of spermidine (SPD) is subject to dispute and requires further research. The anti-tumorigenic potential of wheat germ SPD (150 µM) and clove EUG (100 µM), alone, in combination as SPD+EUG (50 µM + 100 µM) and, as a supplement (SUPPL; 0.6 µM SPD + 50 µM EUG), was investigated on both metastatic SW620 and primary Caco-2 colorectal cancer (CRC) spheroids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!