AI Article Synopsis

  • Cysteine cathepsins play a role in breast cancer progression, but existing inhibitors have not succeeded in clinical use due to side effects, prompting this study to investigate the feedback effects of these inhibitors on cellular dynamics.
  • The research involved treating MDA-MB-231 cells with E64, revealing that while it binds to both cathepsin S and L, it unexpectedly increased active cathepsin S levels while decreasing active cathepsin L levels.
  • The findings suggest that mathematical models can effectively predict the behavior of cathepsins and their inhibitors, which may influence the development of future treatments and highlight the importance of understanding inhibitor effects beyond their intended actions.

Article Abstract

Introduction: Cysteine cathepsins are implicated in breast cancer progression, produced by both transformed epithelial cells and infiltrated stromal cells in tumors, but to date, no cathepsin inhibitor has been approved for clinical use due to unexpected side effects. This study explores cellular feedback to cathepsin inhibitors that might yield non-intuitive responses, and uses computational models to determine underlying cathepsin-inhibitor dynamics.

Methods: MDA-MB-231 cells treated with E64 were tested by multiplex cathepsin zymography and immunoblotting to quantify total, active, and inactive cathepsins S and L. This data was used to parameterize mathematical models of intracellular free and inhibited cathepsins, and then applied to a dynamic model predicting cathepsin responses to other classes of cathepsin inhibitors that have also failed clinical trials.

Results: E64 treated cells exhibited increased amounts of active cathepsin S and reduced amount of active cathepsin L, although E64 binds tightly to both. This inhibitor response was not unique to cancer cells or any one cell type, suggesting an underlying fundamental mechanism of E64 preserving activity of cathepsin S, but not cathepsin L. Computational models were able to predict and differentiate between inhibitor-bound, active, and inactive cathepsin species and demonstrate how different classes of cathepsin inhibitors can have drastically divergent effects on active cathepsins located in different intracellular compartments.

Conclusions: Together, this work has important implications for the development of mathematical model systems for protease inhibition in tissue destructive diseases, and consideration of preservation mechanisms by inhibitors that could alter perceived benefits of these treatment modalities.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816728PMC
http://dx.doi.org/10.1007/s12195-019-00580-5DOI Listing

Publication Analysis

Top Keywords

cathepsin inhibitors
12
cathepsin
11
dynamic model
8
breast cancer
8
cancer cells
8
computational models
8
active inactive
8
classes cathepsin
8
active cathepsin
8
cells
6

Similar Publications

Low-density lipoprotein receptor-related protein 6 ameliorates cardiac hypertrophy by regulating CTSD/HSP90α signaling during pressure overload.

Acta Pharmacol Sin

January 2025

Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, State Key Laboratory of Cardiovascular Diseases, NHC Key Laboratory of Ischemic Heart Diseases, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.

Pressure overload induces pathological cardiac remodeling, including cardiac hypertrophy and fibrosis, resulting in cardiac dysfunction or heart failure. Recently, we observed that the low-density lipoprotein receptor-related protein 6 (LRP6), has shown potential in enhancing cardiac function by mitigating cardiac fibrosis in a mouse model subjected to pressure overload. In this study, we investigated the role of LRP6 as a potential modulator of pressure overload-induced cardiac hypertrophy and elucidated the underlying molecular mechanisms.

View Article and Find Full Text PDF

Combination therapies and other therapeutic approaches targeting the NLRP3 inflammasome and neuroinflammatory pathways: a promising approach for traumatic brain injury.

Immunopharmacol Immunotoxicol

January 2025

Tobacco and Health Research Center, Endocrinology and Metabolism Research Center, Molecular Medicine Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.

Traumatic brain injury (TBI) precipitates a neuroinflammatory cascade, with the NLRP3 inflammasome emerging as a critical mediator. This review scrutinizes the complex activation pathways of the NLRP3 inflammasome by underscoring the intricate interplay between calcium signaling, mitochondrial disturbances, redox imbalances, lysosomal integrity, and autophagy. It is hypothesized that a combination therapy approach-integrating NF-κB pathway inhibitors with NLRP3 inflammasome antagonists-holds the potential to synergistically dampen the inflammatory storm associated with TBI.

View Article and Find Full Text PDF

Role of Cathepsin K in bone invasion of pituitary adenomas: A dual mechanism involving cell proliferation and osteoclastogenesis.

Cancer Lett

January 2025

Department of Endocrinology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China. Electronic address:

This study aimed to investigate the regulation and underlying mechanism of Cathepsin K (CTSK) in bone-invasive pituitary adenomas (BIPAs). A total of 1437 patients with pituitary adenomas were included and followed up. RNA sequencing, immunohistochemistry, and qRT-PCR were used to analyze CTSK expression.

View Article and Find Full Text PDF

Dual Inhibitors of SARS-CoV-2 3CL Protease and Human Cathepsin L Containing Glutamine Isosteres Are Anti-CoV-2 Agents.

J Am Chem Soc

January 2025

Department of Biochemistry and Biophysics, Texas A&M University, 301 Old Main Drive, College Station, Texas 77845, United States.

SARS-CoV-2 3CL protease (Main protease) and human cathepsin L are proteases that play unique roles in the infection of human cells by SARS-CoV-2, the causative agent of COVID-19. Both proteases recognize leucine and other hydrophobic amino acids at the P position of a peptidomimetic inhibitor. At the P position, cathepsin L accepts many amino acid side chains, with a partial preference for phenylalanine, while 3CL-PR protease has a stringent specificity for glutamine or glutamine analogues.

View Article and Find Full Text PDF

Celiac disease is a chronic, immune-mediated enteropathy with symptoms triggered by exposure to dietary gluten in genetically predisposed individuals. The only available management option is lifelong adherence to a gluten-free diet. This randomized, double-blind, placebo-controlled, parallel-group, single-center study tested the effects of the cathepsin S inhibitor RO5459072 on the immune response to a 13-day gluten challenge in 19 participants with celiac disease (ClinicalTrials.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!