Introduction: The neural stem cell (NSC) niche is a highly complex cellular and biochemical milieu supporting proliferating NSCs and neural progenitor cells (NPCs) with close apposition to the vasculature, primarily comprised of endothelial cells (ECs). Current models of the niche incorporate EC-derived factors, but do not reflect the physiologically relevant hemodynamic state of the ECs or the spatial resolution observed between cells within the niche.
Methods: In this work, we developed a novel model of the niche that (1) incorporates ECs cultured with fluid shear stress and (2) fosters paracrine cytokine gradients between ECs and NSCs in a spatiotemporal configuration mimicking the cytoarchitecture of the subventricular niche. A modified cone and plate viscometer was used to generate a shear stress of 10 dynes cm for ECs cultured on a membrane, while statically cultured NPCs are 10 or 1000 m below the ECs.
Results: NPCs cultured within 10 m of dynamic ECs exhibit increased PSA-NCAM and OLIG2 cells compared to progenitors in all other culture regimes and the hemodynamic EC phenotype results in distinct progeny phenotypes. This co-culture regime yields greater release of pro-neurogenic factors, suggesting a potential mechanism for the observed progenitor maturation.
Conclusions: Based on these results, models incorporating ECs exposed to shear stress allow for paracrine signaling gradients and regulate NPC lineage progression with appropriate niche spatial resolution occurring at 10 m. This model could be used to evaluate cellular or pharmacological interactions within the healthy, diseased, or aged brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816782 | PMC |
http://dx.doi.org/10.1007/s12195-017-0516-5 | DOI Listing |
Comput Methods Biomech Biomed Engin
January 2025
Shenzhen Key Laboratory of Cardiovascular Disease, Fuwai Hospital Chinese Academy of Medical Sciences, Shenzhen, Guangdong Province, China.
Impeller radial gap is one of important parts within a blood pump, which may affect the hemodynamics and hemocompatibility. In this study, computational fluid dynamics method was performed to evaluate the impact of radial gap sizes. The volume of scalar shear stress decreased with radial gap sizes increasing.
View Article and Find Full Text PDFJ Clin Med
December 2024
Clinic for Masticatory Disorders and Dental Biomaterials, Center for Dental Medicine, University of Zurich, 8006 Zurich, Switzerland.
: Sinus lifting, a procedure to augment bone in the maxilla, may cause complications such as sinusitis due to impaired drainage. This study aimed to assess how sinus lifting impacts airflow in the sinus cavity, which is essential for patients undergoing dental implants. Using computational fluid dynamics (CFD), this research analyzed airflow changes after sinus floor elevation, offering insights into the aerodynamic consequences of the procedure.
View Article and Find Full Text PDFJ Clin Med
December 2024
National Laboratory Astana, Nazarbayev University, Astana 010000, Kazakhstan.
Despite the high progress that has been made in the field of cardiology, the left ventricular assist device (LVAD) can still cause complications (thrombosis/bleeding) in heart failure (HF) patients after implantation. Complications develop due to the incorrect dose of antithrombotic therapy, due to the influence of the non-physiological shear stress of the device, and also due to inherited genetic polymorphisms. Therefore, the aim of our study is to identify the influence of the genetic polymorphisms on complication development in HF patients with implanted LVADs with prescribed antiplatelet therapy.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Biofluids Laboratory, Perm National Research Polytechnic University, 614990 Perm, Russia.
Simulating the cardiac valves is one of the most complex tasks in cardiovascular modeling. As fluid-structure interaction simulations are highly computationally demanding, machine-learning techniques can be considered a good alternative. Nevertheless, it is necessary to design many aortic valve geometries to generate a training set.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Suzhou XDM 3D Printing Technology Co., Ltd., Suzhou 215000, China.
The stress distribution within the struts of lattice metamaterials is non-uniform under compressive loads, with stress concentrations typically occurring at the node regions. Inspired by bamboo, this study proposes a type of body-centered cubic (BCC) lattice metamaterial with tapered prism struts (BCCT). The compressive behavior, deformation modes, mechanical properties, and failure mechanisms of BCCT lattice metamaterials are systematically analyzed using finite element methods and validated through compression tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!