A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical Role of Nesprin-1-Mediated Nucleus-Actin Filament Binding in Cyclic Stretch-Induced Fibroblast Elongation. | LitMetric

Mechanical Role of Nesprin-1-Mediated Nucleus-Actin Filament Binding in Cyclic Stretch-Induced Fibroblast Elongation.

Cell Mol Bioeng

3Department of Mechanical Engineering, College of Engineering, Nihon University, 1 Nakagawara, Tokusada, Tamuramachi, Koriyama, Fukushima 963-8642 Japan.

Published: August 2017

The intracellular mechanical link tethering the nucleus to the cytoskeleton has been suggested to be the linker of the nucleoskeleton and cytoskeleton (LINC) complex. Previous studies have reported that knockdown of nesprin-1, a component of the LINC complex that directly binds to actin filaments, suppresses cellular morphological response to mechanical stimuli. The relation between nesprin-1 knockdown and cellular morphological changes, however, remains unclear. In this study, we examined the mechanical role of nucleus-actin filament binding in morphological changes of fibroblasts exposed to cyclic stretching. After exposure to 10% cyclic stretching for 6 h, fibroblasts transfected with nesprin-1-specific small interfering RNA showed fewer elongated shapes compared with non-transfected cells. To further examine the mechanical role of the nucleus and nucleus-bound actin filaments, we applied cyclic stretching to fibroblasts treated with Trichostatin A (TSA), which decreases nuclear stiffness and thereby reduces nucleus-binding actin filament tension. TSA-treatment was found to induce more rounded cellular shapes than those of non-treated cells under both static and cyclic stretching conditions. These results suggest that the tension of nucleus-bound actin filaments plays an important role in the formation of elongated fibroblasts under cyclic stretching and that nesprin-1 knockdown causes a decrease of tension in nucleus-associated actin filaments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6816722PMC
http://dx.doi.org/10.1007/s12195-017-0487-6DOI Listing

Publication Analysis

Top Keywords

cyclic stretching
20
actin filaments
16
mechanical role
12
nucleus-actin filament
8
filament binding
8
linc complex
8
cellular morphological
8
nesprin-1 knockdown
8
morphological changes
8
nucleus-bound actin
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!