Surface dose and acute skin reactions in external beam breast radiotherapy.

Med Dosim

Beaumont Health System, Royal Oak, MI 48073, USA. Electronic address:

Published: February 2021

The biologically relevant depth for acute skin reactions in radiotherapy is 70 µm. The dose at this depth is difficult to measure or calculate and can be quite different than the dose at a depth of as little as 1 mm. For breast radiotherapy with medial and lateral tangential beams, the skin dose depends on both the contribution from the entrance beam and the exit beam. The skin dose has been estimated in a breast model hemi-ellipse accounting for field size, beam energy, obliquity, lack of backscatter, fractionation, size and shape of the hemi-ellipse. The dose has been held constant along the axis of symmetry of the hemi-ellipse by introducing modulation as in clinical IMRT practice. Dose distributions have been computed as a function of the polar angle from the center of the hemi-ellipse. The exit dose always dominates the entrance dose for all realistic parameters. As a result, the surface dose is higher for 18 MV than 6 MV over the entire surface for all reasonable sizes and shapes of the hemi-ellipse. The results of these calculations suggest that substituting an 18 MV beam for a 6 MV beam to achieve greater skin sparing may have just the opposite effect. The ratio of the surface dose to the mid-depth dose ranges from about 35% at polar angle 0 to up to 70% at polar angle 80. The dose rises sharply at angles above 30. The surface dose rises moderately at all angles as the size of the hemi-ellipse increases. The effect of shape is somewhat complex: as the breast becomes flatter, doses at intermediate angles increase, but doses at small and large angles decrease. The biologically effective dose for erythema and moist desquamation is about 2 to 3 Gy higher at all polar angles for conventional fractionation (2.00 Gy × 25 fractions) than for hypofractionation (2.66 Gy × 16).

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.meddos.2019.09.001DOI Listing

Publication Analysis

Top Keywords

surface dose
16
dose
14
polar angle
12
acute skin
8
skin reactions
8
breast radiotherapy
8
dose depth
8
skin dose
8
dose rises
8
beam
6

Similar Publications

Pseudomonas aeruginosa is an emergent threat due to the antimicrobial resistance crisis. Bacteriophages (phages) are promising agents for phage therapy approaches against P. aeruginosa.

View Article and Find Full Text PDF

Purpose: Datopotamab deruxtecan (Dato-DXd) is a trophoblast cell-surface antigen-2-directed antibody-drug conjugate with a highly potent topoisomerase I inhibitor payload. The TROPION-Lung05 phase II trial (ClinicalTrials.gov identifier: NCT04484142) evaluated the safety and clinical activity of Dato-DXd in patients with advanced/metastatic non-small cell lung cancer (NSCLC) with actionable genomic alterations progressing on or after targeted therapy and platinum-based chemotherapy.

View Article and Find Full Text PDF

Background: Radiation dermatitis (RD) or skin toxicity is one of the most common acute side effects of radiation in head and neck cancer patients. This study aims to correlate the pattern of volumetric-modulated arc therapy (VMAT) dose distribution to the skin with the grades of RD.

Materials And Methods: 80 plans of histopathologically proven squamous cell carcinoma head and neck patients already treated with definitive concurrent chemoradiation [66-70 Gy in 33-35# or 66 Gy in 30# in simultaneous integrated boost (SIB), with concurrent Cisplatin 100 mg/m 3 weekly] at our institution between November 2022 and November 2023 were retrieved from our digital archives.

View Article and Find Full Text PDF

Purpose: Oral isotretinoin is a derivative of vitamin A, used to treat acne vulgaris. One of its effects is altering the corneal surface and ocular glands, resulting in eye dryness and various other symptoms. This study aimed to analyze the impact of systemic isotretinoin treatment on ocular health and investigate the potential risk factors contributing to ocular pathology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!