Biofilm formation on antifouling coatings is a serious concern in seawater cooling systems and the maritime industry. A prolific biofilm forming strain (), possessing high tolerance (>1,000 µg ml) to dissolved copper ions (Cu) was isolated from titanium coupons exposed in the coastal waters of Kalpakkam, east coast of India. formed increased biofilm ( 0.05) at 100 µg ml of Cu ions, when compared with the untreated control. To combat biofilm formation of this strain, the efficacy of copper oxide nanoparticles synthesized from copper nitrate by varying the concentrations of hexamine and cetyl trimethyl ammonium bromide (CTAB), was investigated. Complete (100%) inhibition of biofilm formation was observed with plain CuO NP (0.5 M hexamine, uncapped) at 1,000 µg ml. Capping with CTAB, influenced the morphology and the purity of the synthesized CuO NPs but did not alter their surface charge. Capping reduced metal ion release from CuO NPs and their antibacterial and anti-biofilm property against Overall, uncapped CuO NPs were effective in controlling biofilm formation of . Concurrent release of copper ions and contact mediated physical damage by CuO NPs offer a promising approach to tackle metal tolerant biofilm bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08927014.2019.1687689DOI Listing

Publication Analysis

Top Keywords

biofilm formation
16
cuo nps
16
copper oxide
8
oxide nanoparticles
8
copper ions
8
biofilm
7
copper
6
cuo
5
nanoparticles effective
4
effective anti-biofilm
4

Similar Publications

Our previous studies revealed the existence of a Universal Receptive System that regulates interactions between cells and their environment. This system is composed of DNA- and RNA-based Teazeled receptors (TezRs) found on the surface of prokaryotic and eukaryotic cells, as well as integrases and recombinases. In the current study, we aimed to provide further insight into the regulatory role of TezR and its loss in Staphylococcus aureus gene transcription.

View Article and Find Full Text PDF

For any organism, survival is enhanced by the ability to sense and respond to threats in advance. For bacteria, danger sensing among kin cells has been observed, but the presence or impacts of general danger signals are poorly understood. Here we show that different bacterial species use exogenous peptidoglycan fragments, which are released by nearby kin or non-kin cell lysis, as a general danger signal.

View Article and Find Full Text PDF

Targeting Pseudomonas aeruginosa PAO1 pathogenicity: The role of Glycyrrhiza glabra in inhibiting virulence factors and biofilms.

Diagn Microbiol Infect Dis

December 2024

Department of Microbiology, Centre for infectious Diseases, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University (Deemed to be University), Chennai 600 077, Tamil Nadu, India. Electronic address:

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative opportunistic pathogen posing serious risks to immunocompromised individuals due to its virulence factors and biofilm formation. This study evaluated the efficacy of methanol extract of Glycyrrhiza glabra (G.

View Article and Find Full Text PDF

The collective surface motility and swarming behavior of microbes play a crucial role in the formation of polymicrobial communities, shaping ecosystems as diverse as animal and human microbiota, plant rhizospheres, and various aquatic environments. In the human oral microbiota, T9SS-driven gliding bacteria transport non-motile microbes and bacteriophages as cargo, thereby influencing the spatial organization and structural complexity of these polymicrobial communities. However, the physical rules governing the dispersal of T9SS-driven bacterial swarms are barely understood.

View Article and Find Full Text PDF

In recent years, the incidence of fungal infections has been rising annually, especially among immunocompromised populations, posing a significant challenge to public health. Although antifungal medications provide some relief, the escalating problem of resistance sharply curtails their effectiveness, presenting an urgent clinical dilemma that demands immediate attention. Research has shown that fungal resistance is closely related to quorum sensing (QS), and QS inhibitors (QSIs) are considered an effective solution to this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!