Mapping the conformational pathway of biomolecules is a great challenge because of the large size and complexity of biomolecules. The nudged elastic band (NEB) method has been applied to study the reaction pathways for both small organic molecules and small peptides of a few amino acids. In this work, for the first time, the NEB method was employed to study the conformational pathways of Annexin A1, a membrane-binding protein of 334 amino acids. The N-terminal domain conformational change from the buried state within the core domain to the exposed state outside the core domain is a vital step for Annexin A1 to interact with membranes or target proteins. In this work, multiple molecular dynamics simulations using the NEB method were performed to simulate the N-terminal domain conformational pathway of Annexin A1. Our results suggested that the N-terminal domain of Annexin A1 is removed from the repeat III of the core domain in a sliding motion. The loop region of repeat III covering the N-terminal helix in the buried state does not lift up for the N-terminal to swing out of the pocket; instead, the N-terminal pulls out from the bottom of the core domain. The N-terminal domain linker region (S27-N42) flexibility is critical for the N-terminal domain conformational changes. Our results also suggested a two-step folding process for the helix D in repeat III, M247-V250 folds first followed by the folding of L251-E254. The results demonstrated that the NEB method could be an effective tool for theoretical studies on conformational pathways of biomolecules.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7082081 | PMC |
http://dx.doi.org/10.1021/acs.jpcb.9b08120 | DOI Listing |
Biomol NMR Assign
January 2025
CSIR-Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad, 500007, India.
In Arabidopsis thaliana, micro-RNA regulation is primarily controlled by DCL1, an RNase III enzyme, and its associated proteins. DCL1, together with DRB2, governs a specific group of miRNAs that induce the inhibition of target mRNA translation. DRB2 is a multi-domain protein containing two N-terminal dsRNA binding domains (dsRBD) separated by a linker, followed by an unstructured C-terminal tail.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
January 2025
Center for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium.
Apolipoprotein E (apoE) polymorphism is associated with different pathologies such as atherosclerosis and Alzheimer's disease. Knowledge of the three-dimensional structure of apoE and isoform-specific structural differences are prerequisites for the rational design of small molecule structure modulators that correct the detrimental effects of pathological isoforms. In this study, cross-linking mass spectrometry (XL-MS) targeting Asp, Glu and Lys residues was used to explore the intramolecular interactions in the E2, E3 and E4 isoforms of apoE.
View Article and Find Full Text PDFArch Microbiol
January 2025
Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang, Selangor, 43400, Malaysia.
Bacteriophages produce endolysins at the end of the lytic cycle, which are crucial for lysing the host cells and releasing virion progeny. This lytic feature allows endolysins to act as effective antimicrobial alternatives when applied exogenously. Staphylococcal endolysins typically possess a modular structure with one or two enzymatically active N-terminal domains (EADs) and a C-terminal cell wall binding domain (CBD).
View Article and Find Full Text PDFCancer Biol Ther
December 2025
National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, Department of Hematology, Precision Medical Institute, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
Dysfunction or dysregulation of deubiquitination is closely related to the initiation and development of multiple cancers. Targeted regulation of deubiquitination has been recognized as an important strategy in tumor therapy. However, the mechanism by which drugs regulate deubiquitinase is not clear.
View Article and Find Full Text PDFFront Immunol
January 2025
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.
Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.
Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!