Supramolecular assembly utilizing simultaneous formation of three pnictogen bonds around a single antimony vertex was explored via X-ray crystallography, solution NMR, and computational chemistry. An arylethynyl (AE) ligand was designed to complement the three electrophilic regions around the Sb compound. Though solution studies reveal large binding constants for individual pyridyl units with the Sb donor, the rigidity and prearrangement of the AE acceptor proved necessary to achieve simultaneous binding of three acceptors to the Sb-centered pnictogen-bond donor. Calculations and X-ray structures suggest that negative cooperativity upon sequential binding of three acceptors to a Sb center limits the utility of triple-pnictogen bonding pyridyl acceptors. These limitations can be negated, however, when positive cooperativity is designed into a complementary acceptor ligand.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.inorgchem.9b02761 | DOI Listing |
Inorg Chem
December 2019
Department of Chemistry and Biochemistry , Texas Tech University, 1204 Boston Avenue , Lubbock , Texas 79409-1061 , United States.
Supramolecular assembly utilizing simultaneous formation of three pnictogen bonds around a single antimony vertex was explored via X-ray crystallography, solution NMR, and computational chemistry. An arylethynyl (AE) ligand was designed to complement the three electrophilic regions around the Sb compound. Though solution studies reveal large binding constants for individual pyridyl units with the Sb donor, the rigidity and prearrangement of the AE acceptor proved necessary to achieve simultaneous binding of three acceptors to the Sb-centered pnictogen-bond donor.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!