Diphosphate compounds (KYPO) co-doped with Yb and Er ions were obtained by one step urea assisted combustion synthesis. The experimental parameters of synthesis were optimized using an experimental design approach related to co-dopants concentration and heattreatment as well as annealing time. The obtained materials were studied with theinitial requirements showing appropriate morphological (X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM)) and spectroscopic properties (emission, luminescence kinetics). Moreover, the effect of Er and Yb ions doped KYPO on morphology, proliferative and metabolic activity and apoptosis in MC3T3-E1 osteoblast cell line and 4B12osteoclasts cell line was investigated. Furthermore, the expression of the common pro-osteogenic markers in MC3T3-E1 osteoblast as well as osteoclastogenesis related markers in 4B12 osteoclasts was evaluated. The extensive in vitro studies showed that KYPO doped with 1 mol% Er and 20 mol% Yb ions positively affected the MC3T3-E1 and 4B12 cells activity without triggering their apoptosis. Moreover, it was shown that an activation of mTOR and Pi3k signaling pathways with 1 mol% Er, 20 mol% Yb: KYPO can promote the MC3T3-E1 cells expression of late osteogenic markers including RUNX and BMP-2. The obtained data shed a promising light for KYPO doped with Er and Yb ions as a potential factors improving bone fracture healing as well as in bioimaging (so-called in theranostics).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915349 | PMC |
http://dx.doi.org/10.3390/nano9111597 | DOI Listing |
J Dent Sci
December 2024
Division for Globalization Initiative, Liaison Center for Innovative Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan.
Background/purpose: Titanium dioxide nanotube (TNT) structures have been shown to enhance the early osseointegration of dental implants. Nevertheless, the optimal nanotube diameter for promoting osteogenesis remains unclear due to variations in cell types and manufacture of nanotubes. This study aimed to evaluate the differences in MC3T3-E1 and Saos-2 cells behavior on nanotubes of varying diameters.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Orthopedics, The Second People's Hospital of Hefei, Hefei Hospital, Affiliated to Anhui Medical University No. 246 of Heping Road, Yaohai District Hefei Anhui 230011 China
: to address the issue of burst drug release in antibiotic-loaded poly(methyl methacrylate) (PMMA) bone cement (ALBC), this study involved preparation of novel PMMA bone cement and determination of its antibacterial activity, biocompatibility, compressive properties, maximum temperature, and setting time. : a novel acrylic monomer, which contains the 3,4-dichloro-5-hydroxyfuran-2(5)-one (DHF), was synthesized and utilized to develop non-leaching antibacterial PMMA bone cement (NLBC), designated as DHF-methacrylic acid (DHF-MAA) bone cement. In the preparation of this bone cement, DHF-MAA served as a key component of the liquid phase.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Pharmaceutical Technology Laboratory, Department of Pharmacy, University of Patras, Rion, 26504, Greece.
Introduction: FTY720 bioactive lipid has proliferative, osteoinductive, chemo attractive, and angiogenic properties, being thus a potential exogenous administered agent for promotion of bone regeneration. Herein we developed FTY720-loaded liposomes as a potential delivery system that could retain and prolong the bioactivity of the bioactive lipid and at the same time reduce its cytotoxicity (at high doses).
Methods: FTY720 liposomes were prepared by thin-lipid hydration and microfluidic flow focusing, and evaluated for their ability to induce proliferation, osteoinduction, and chemoattraction in three cell types: MC3T3-E1 pre-osteoblast cells, L929 fibroblast cells, and ATDC5 chondrogenic cells.
J Cell Physiol
January 2025
Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan.
Our previous study revealed a link between O-GlcNAc transferase (OGT) localization and protein phosphatase 2A (PP2A) activity in osteoblast. Given the association of PP2A downregulation with osteoblast differentiation, we hypothesized that OGT localization changes during this process. We examined OGT localization in MC3T3-E1 cells undergoing differentiation under normal and high glucose conditions.
View Article and Find Full Text PDFBiochem Pharmacol
January 2025
School of Medicine, Nankai University, Tianjin, PR China. Electronic address:
Osteoporosis is a chronic disease distinguished by decreased bone density and degradation of bone microstructure, frequently linked with inflammation and oxidative stress, both of which contribute to the acceleration of bone resorption. The compound 5,7-Dihydroxy-4-methylcoumarin (D4M) present in Artemisia dracunculus exhibits significant antioxidant and anti-inflammatory properties. Nonetheless, the potential anti-osteoporotic effects of D4M, along with the molecular targets and mechanisms responsible for these effects, have not been studied.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!