Aluminum matrix composites reinforced with multiwalled carbon nanotubes (MWCNTs) are promising materials for applications in various high-tech industries. Control over the processes of interfacial interaction in Al/MWCNT composites is important to achieve a high level of mechanical properties. The present study describes the effects of coating MWCNTs with titanium carbide nanoparticles on the formation of mechanical properties and the evolution of the reinforcement structure in bulk aluminum matrix nanocomposites with low concentrations of MWCNTs under conditions of solid-phase consolidation of ball-milled powder mixtures. Using high-energy ball milling and uniaxial hot pressing, two types of bulk nanocomposites based on aluminum alloy AA5049 that were reinforced with microadditions of MWCNTs and MWCNTs coated with TiC nanoparticles were successfully produced. The microstructural and mechanical properties of the Al/MWCNT composites were investigated. The results showed that, on the one hand, the TiC nanoparticles on the surface of the MWCNT hybrid reinforcement reduced the damage of reinforcement under the intense exposure of milling bodies, and on the other hand, they reduced the contact area of the MWCNTs with the matrix material (acting as a barrier interface), which also locally inhibited the reaction between the matrix and the MWCNTs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6915622PMC
http://dx.doi.org/10.3390/nano9111596DOI Listing

Publication Analysis

Top Keywords

aluminum matrix
12
tic nanoparticles
12
mechanical properties
12
matrix nanocomposites
8
reinforced microadditions
8
multiwalled carbon
8
carbon nanotubes
8
coated tic
8
al/mwcnt composites
8
mwcnts
7

Similar Publications

The complementary properties of corrosion resistance and ballistic resistance of AA5083 and AA7075, respectively, explain the significance of welding these two alloys in the marine armor industry. This study investigates a novel Al-SiC matrix reinforcement with a different SiC weight ratio in dissimilar friction stir welding of the AA5083/AA7075 joint at different transverse and rotational speeds. The study deduced that the novel matrix can play an important role in improving strength and ductility simultaneously.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries hold significant promise due to high energy density, cost-effectiveness, and ecological sustainability, but their practical applications are constrained by suboptimal electrochemical performance and the detrimental shuttle effect. Herein, a porous, sandwich-structured composite was developed to function as a freestanding cathode designed for Li-S batteries without aluminum foil. Porous carbon nanofibers (PCNF) were employed as the conductive matrix for sulfur, with tungsten carbide (WC) being incorporated to furnish abundant active sites for polysulfide adsorption.

View Article and Find Full Text PDF

In response to the demand for epoxy-based dielectric substrates with low dielectric loss in high-frequency and high-speed signal transmission applications, this study presents a surface-engineered filler material. Utilizing ball-milling, surface-modified aluminum flakes containing organic (stearic acid) and inorganic (aluminum oxide) coatings are developed. Incorporation of the filler into the epoxy matrix results in a significant increase in dielectric permittivity, by nearly 5 times (from 4.

View Article and Find Full Text PDF

Effect of Stress Aging on Strength, Toughness and Corrosion Resistance of Al-10Zn-3Mg-3Cu Alloy.

Materials (Basel)

January 2025

Shandong Zhuoyue Precision Industry Group Co., Ltd., Jining 272114, China.

The 7000 series aluminum alloy represented by Al-Zn-Mg-Cu has good strength and toughness and is widely used in the aerospace field. However, its high Zn content results in poor corrosion resistance, limiting its application in other fields. In order to achieve the synergistic improvement of both strength and corrosion resistance, this study examines the response of strength, toughness and corrosion resistance of a high-strength aluminum alloy tail frame under aging conditions with external stresses of 135 MPa, 270 MPa and 450 MPa.

View Article and Find Full Text PDF

A hybrid coating made of poly (methyl methacrylate) with SiO2-TiO2 particles (PMMA/SiO2-TiO2) has been developed for use as a coating on nanosatellites, evaluating its resistance to high vacuum by quantifying its weight loss. The coating was applied on an Al 7075 aluminum substrate used for the aerospace sector. PMMA/SiO2-TiO2 hybrid coatings were prepared using sol-gel reaction in situ assisted with sonochemistry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!