Graphene oxide (GO) can dramatically enhance the gas separation performance of membrane technologies beyond the limits of conventional membrane materials in terms of both permeability and selectivity. Graphene oxide membranes can allow extremely high fluxes because of their ultimate thinness and unique layered structure. In addition, their high selectivity is due to the molecular sieving or diffusion effect resulting from their narrow pore size distribution or their unique surface chemistry. In the first part of this review, we briefly discuss different mechanisms of gas transport through membranes, with an emphasis on the proposed mechanisms for gas separation by GO membranes. In the second part, we review the methods for GO membrane preparation and characterization. In the third part, we provide a critical review of the literature on the application of different types of GO membranes for CO, H, and hydrocarbon separation. Finally, we provide recommendations for the development of high-performance GO membranes for gas separation applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888465 | PMC |
http://dx.doi.org/10.3390/ijms20225609 | DOI Listing |
Water Sci Technol
January 2025
Engineering & Energy, College of Science Health Engineering and Education, Murdoch University, 6150 Perth, Australia E-mail:
Biogas, consisting mainly of CO and CH, offers a sustainable source of energy. However, this gaseous stream has been undervalued in wastewater treatment plants owing to its high CO content. Biogas upgrading by capturing CO broadens its utilisation as a substitute for natural gas.
View Article and Find Full Text PDFAcc Mater Res
January 2025
School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30322, United States.
Increasing demand for high-purity fine chemicals and a drive for process intensification of large-scale separations have driven significant work on the development of highly engineered porous materials with promise for sorption-based separations. While sorptive separations in porous materials offer energy-efficient alternatives to longstanding thermal-based methods, the particulate nature of many of these sorbents has sometimes limited their large-scale deployment in high-throughput applications such as gas separations, for which the necessary high feed flow rates and gas velocities accrue prohibitive operational costs. These processability limitations have been historically addressed through powder shaping methods aimed at the fabrication of structured sorbent contactors based on pellets, beads or monoliths, commonly obtained as extrudates.
View Article and Find Full Text PDFRSC Adv
January 2025
a, Department of Chemical Engineering, Birla Institute of Technology & Science, Pilani Campus Pilani Rajasthan 333031 India +91-1596255839.
To address the limitations of polymeric membranes, mixed matrix membranes for CO separation from biogas mixtures (CO and CH) have been investigated utilizing various fillers. In this study, we investigated novel MMMs using 3D and 2D indium-based MOFs, MIL-68(In)-NH and In(aip), in a polysulfone polymer matrix. To confirm synthesis, both fillers were subjected to XRD and FTIR analysis, as well as FESEM characterization to assess their 2D and 3D structures.
View Article and Find Full Text PDFJ Oleo Sci
January 2025
Faculty of Food and Agricultural Sciences, Fukushima University.
Sterols and triterpene alcohols exist in free and esterified forms in edible oils. To date, only few studies have determined the content of free or esterified sterols and triterpene alcohols using gas chromatography-flame ionization detection (GC-FID). In this study, analytical conditions were optimized using free and esterified sterol standards.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Aramco Americas, Boston Research Center, Cambridge, MA, 02139, USA.
Membrane-based gas separation provides an energy-efficient approach for the simultaneous CO and HS removal from sour natural gas. The fluorinated polyimide (PI) membranes exhibited a promising balance between permeability and permselectivity for sour natural gas separation. To further improve the separation efficiency of fluorinated PI membranes, a melamine-copolymerization synthetic approach is devised that aims to incorporate melamine motifs with high sour gas affinity into the structure of the PI membranes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!