AI Article Synopsis

Article Abstract

Topical application of vascular endothelial growth factor A (VEGFA) inhibitors including Bevacizumab is used for antiangiogenic therapy at the ocular surface. While clinical studies have suggested that this approach is well-tolerated, the effect of the drug on limbal epithelial stem cells has not been studied. In this study, the effect of Bevacizumab on phenotype and functionality of putative limbal epithelial stem cells (SC) was investigated. The effect of Bevacizumab on human limbal epithelial cells was assessed in terms of metabolic activity and scratch wound closure. The different treatment groups featured no difference in proliferation and colony forming efficiency (CFE) of limbal epithelial cells or their putative SC marker expression. A significant delay in scratch closure of all the Bevacizumab-treated groups was detected at 4 h. RNA and protein quantification indicated a dose-responsive increase of keratin 3. VEGFA RNA expression also increased while VEGFC and D as well as VEGFR1, 2 and 3 were unchanged. This study highlights previously unknown effects of Bevacizumab on cultured putative limbal epithelial SC: a dose-related increase of keratin 3, an increase in VEGFA as well as a delay in scratch wound closure. These in vitro data should be considered when using Bevacizumab in the context of limbal epithelial SC transplantation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6912829PMC
http://dx.doi.org/10.3390/jcm8111925DOI Listing

Publication Analysis

Top Keywords

limbal epithelial
28
epithelial cells
12
keratin vegfa
8
human limbal
8
epithelial stem
8
stem cells
8
putative limbal
8
scratch wound
8
wound closure
8
delay scratch
8

Similar Publications

Aim: This study aimed to evaluate the impact of pterygium excision combined with autologous limbal stem cell transplantation on microvascular density, tear film stability, and corneal wound healing in the management of pterygium.

Methods: A retrospective analysis was conducted on 317 patients with pterygium who underwent treatment between January 2021 and January 2024. Patients were divided into a control group (pterygium excision alone, n = 161) and a study group (pterygium excision combined with autologous limbal stem cell transplantation, n = 156) based on the surgical approach.

View Article and Find Full Text PDF

Y-27632 and dual media culture approach promote the construction and transplantation of rabbit limbal epithelial cell sheets via cell spheroid culture and auto-bioprinting.

Acta Biomater

January 2025

Ophthalmology Department, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, China; Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China; Aier School of Ophthalmology, Central South University, Changsha, China. Electronic address:

The shortage of corneal donors and the limitations in tissue engineering grafts, such as biocompatibility and mechanical properties, pose significant challenges in corneal transplantation. Here, for the first time, we investigate the effect of Rho kinase inhibitor Y-27632 and a dual media culture approach, including proliferative media (M1) and stabilizing media (M2), on rabbit limbal epithelial stem cells (LESCs), aiming to explore the feasibility of constructing corneal cell sheets in vitro through auto-bioprinting and assessing their corneal wound healing capacity in vivo. Y-27632 has primarily demonstrated significantly enhanced LESCs growth, proliferation, and reduced apoptosis.

View Article and Find Full Text PDF

3D printed biomimetic bilayer limbal implants for regeneration of the corneal structure in limbal stem cell deficiency.

Acta Biomater

January 2025

Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing 100005, China. Electronic address:

Limbal stem cell deficiency (LSCD) causes vision loss and is often treated by simple corneal epithelial cell transplantation with poor long-term efficiency. Here, we present a biomimetic bilayer limbal implant using digital light processing 3D printing technology with gelatin methacrylate (GelMA) and poly (ethylene glycol) diacrylate (PEGDA) bioinks containing corneal epithelial cells (CECs) and corneal stromal stem cells (CSSCs), which can transplant CECs and improve the limbal niche simultaneously. The GelMA/PEGDA hydrogel possessed robust mechanical properties to support surgical transplantation and had good transparency, suitable swelling and degradation rate as a corneal implant.

View Article and Find Full Text PDF

Transdifferentiation of rat keratinocyte progenitors to corneal epithelial cells by limbal niche via the STAT3/PI3K/AKT signaling pathway.

Stem Cell Res Ther

January 2025

Department of Ophthalmology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.

Purpose: To develop a method for enriching keratinocyte progenitor cells (KPCs) and establish a limbal niche (LN)-mediated transdifferentiation protocol of KPCs into corneal epithelial cells.

Methods: Limbal niche cells (LNCs) were isolated from limbal tissues through enzymatic digestion and characterized. Conditioned medium from LNCs cultures was collected.

View Article and Find Full Text PDF

Background: Aniridia is a rare panocular disease caused by gene mutation in the PAX6, which is essential for eye development. Aniridia is inherited in an autosomal dominant manner, but its phenotype can vary significantly among individuals with the same mutation. Animal models, such as drosophila, zebrafish, and rodents, have been used to study aniridia through Pax6 deletions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!