Diesel Exhaust Particle Exposure Compromises Alveolar Macrophage Mitochondrial Bioenergetics.

Int J Mol Sci

Metabolism Research Lab, Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA.

Published: November 2019

Diesel exhaust particles (DEPs) are known pathogenic pollutants that constitute a significant quantity of air pollution. Given the ubiquitous presence of macrophages throughout the body, including the lungs, as well as their critical role in tissue and organismal metabolic function, we sought to determine the effect of DEP exposure on macrophage mitochondrial function. Following daily DEP exposure in mice, pulmonary macrophages were isolated for mitochondrial analyses, revealing reduced respiration rates and dramatically elevated HO levels. Serum ceramides and inflammatory cytokines were increased. To determine the degree to which the changes in mitochondrial function in macrophages were not dependent on any cross-cell communication, primary pulmonary murine macrophages were used to replicate the DEP exposure in a cell culture model. We observed similar changes as seen in pulmonary macrophages, namely diminished mitochondrial respiration, but increased HO production. Interestingly, when treated with myriocin to inhibit ceramide biosynthesis, these DEP-induced mitochondrial changes were mitigated. Altogether, these data suggest that DEP exposure may compromise macrophage mitochondrial and whole-body function via pathologic alterations in macrophage ceramide metabolism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6888061PMC
http://dx.doi.org/10.3390/ijms20225598DOI Listing

Publication Analysis

Top Keywords

dep exposure
16
macrophage mitochondrial
12
diesel exhaust
8
mitochondrial function
8
pulmonary macrophages
8
mitochondrial
7
exposure
5
macrophages
5
exhaust particle
4
particle exposure
4

Similar Publications

Genetic evidence of the causal relationships between psychiatric disorders and cardiovascular diseases.

J Psychosom Res

December 2024

Department of Health Statistics, School of Public Health, Shanxi Medical University, 56 Xin Jian South Road Street, Taiyuan, Shanxi, China; Key Laboratory of Coal Environmental Pathogenicity and Prevention (Shanxi Medical University), Ministry of Education, Taiyuan, Shanxi, China. Electronic address:

Objective: Our primary objective is to investigate the causal relationships between 12 psychiatric disorders (PDs) and atrial fibrillation (AF), coronary artery disease (CAD), myocardial infarction (MI), and heart failure (HF).

Methods: Firstly, we used linkage disequilibrium score regression to calculate the genetic correlations between 12 PDs and 4 cardiovascular diseases (CVDs). Subsequently, we performed two-sample and bidirectional Mendelian randomization (MR) analyses of phenotypes with significant genetic correlations to explore the causal relationships between PDs and CVDs.

View Article and Find Full Text PDF

Integrated hepatic transcriptomics and metabolomics identify Pck1 as a key factor in the broad dysregulation induced by vehicle pollutants.

Part Fibre Toxicol

December 2024

Division of Cardiology, David Geffen School of Medicine, University of California-Los Angeles, 10833 Le Conte Avenue, CHS 43-264, P.O. Box 951679, Los Angeles, CA, 90095, USA.

Background: Exposure to air pollution is associated with worldwide morbidity and mortality. Diesel exhaust (DE) emissions are important contributors which induce vascular inflammation and metabolic disturbances by unknown mechanisms. We aimed to determine molecular pathways activated by DE in the liver that could be responsible for its cardiometabolic toxicity.

View Article and Find Full Text PDF

Objectives: The objectives of the study are to investigate infection risk in offspring born to women with systemic lupus erythematosus (SLE) compared with offspring born to women without SLE and examine the mediating role of preterm birth.

Design: This is a register-based cohort study.

Setting: Liveborn singletons born in Sweden, 2006-2021, were included in the study.

View Article and Find Full Text PDF

Particulate matter (PM, diameter < 10 μm) and Diesel exhaust particles (DEP) exposure can cause severe respiratory disorders. This investigation explored the protective effects of Reliea® (RelA), combination of Codonopsis lanceolata and Chaenomeles sinensis extract, against airway inflammation related to PMD exposure. RelA treatment suppressed reactive oxygen species, nitric oxide release, cytokine expression (IL-6, IL-1β, iNOS, CXCL-2, MCP-1, and TNF-α), and the related inflammatory mechanisms in PM-induced alveolar macrophage cells.

View Article and Find Full Text PDF

Low-light image enhancement aims to enhance the visibility and contrast of low-light images while eliminating complex degradation issues such as noise, artifacts, and color distortions. Most existing low-light image enhancement methods either focus on quality while neglecting computational efficiency or have limited learning and generalization capabilities. To address these issues, we propose a Bilateral Enhancement Network with signal-to-noise ratio fusion, called BiEnNet, for lightweight and generalizable low-light image enhancement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!