A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Enhanced cavitation activity in a slab-shaped optical absorber during photo-mediated ultrasound therapy. | LitMetric

Enhanced cavitation activity in a slab-shaped optical absorber during photo-mediated ultrasound therapy.

Phys Med Biol

Bioengineering Program and Institute for Bioengineering Research, University of Kansas, Lawrence, KS, United States of America.

Published: February 2020

Recently, new studies have shown that combined laser and ultrasound, or photo-mediated ultrasound therapy (PUT), can enhance cavitation in optically absorptive targets to disrupt tissues through photoacoustic (PA) effect. These studies, including both experimental and theoretical investigations, have largely focused on blood vessels, which are modeled as cylindrically-shaped optical absorbers for PA wave generation and propagation. However, in many clinical situations, target tissues may not be cylindrically-shaped. In this paper we investigated the effect of PUT on a slab-shaped optical absorber, much larger than the size of the laser beam or the ultrasound focal point. Our results demonstrated that laser light could generate a PA wave that could enhance cavitation not only at the surface of a slab, but also at depths when combined with ultrasound, suggesting that PUT may be effective in enhancing cavitation in a large range of soft tissues. Our results also demonstrated that the cavitation enhancement was based on the optical absorption of the targeted tissue, allowing for self-targeting treatments when optical contrast is present. Additionally, we demonstrated that for the greatest cavitation enhancement in deeper layers a focused laser beam geometry would be most effective.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7050415PMC
http://dx.doi.org/10.1088/1361-6560/ab56f7DOI Listing

Publication Analysis

Top Keywords

slab-shaped optical
8
optical absorber
8
photo-mediated ultrasound
8
ultrasound therapy
8
enhance cavitation
8
laser beam
8
cavitation enhancement
8
optical
5
ultrasound
5
cavitation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!