Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Radiofrequency ablation (RFA) is a popular modality for tumor treatment. However, inexpensive real-time monitoring of RFA within multiple tissue types is still an ongoing research topic. The objective of this study is to utilize multi-frequency electrical impedance data within real-time RFA depth estimation through data fusion schemes that include non-linear machine learning (ML) models. Multi-frequency tissue complex electrical impedance measurements are used to provide input data to the data fusion schemes. Our results show that the fusion schemes significantly decrease both the spread of residuals and the mean of the residuals for depth estimation. Thus, data fusion can be a significant tool for use in improving the performance of ML-based monitoring for RFA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2019.2952922 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!