Arthritis induces bone loss by inflammation-mediated disturbance of bone homeostasis. On the other hand, pain and impaired locomotion are highly prevalent in arthritis and result in reduced general physical activity and less pronounced mechanical loading. Bone is affected by mechanical loading, directly through impact with the ground during movement and indirectly through muscular activity. Mechanical loading in its physiological range is essential for maintaining bone mass, whereas disuse leads to bone loss. The aim of this study was to investigate the impact of mechanical loading on periarticular bone as well as inflammation during arthritis. Mechanical loading was either blocked by botulinum neurotoxin A (Botox) injections before induction of arthritis, or enhanced by cyclic compressive loading, three times per week during arthritis induction. Arthritis was verified and evaluated histologically. Trabecular and cortical bone mass were investigated using micro-computed tomography (μCT), subchondral osteoclastogenesis and bone turnover was assessed by standard methods. Inhibition of mechanical loading enhanced arthritis-induced bone loss while it did not affect inflammation. In contrast, enhanced mechanical loading mitigated arthritis-induced bone loss. Furthermore, the increase in bone resorption markers by arthritis was partly blocked by mechanical loading. In conclusion, enhanced arthritic bone loss after abrogation of mechanical loading suggests that muscle forces play an essential role in preventing arthritic bone loss. In accordance, mechanical loading of the arthritic joints inhibited bone loss, emphasizing that weight bearing activities may have the potential to counteract arthritis-mediated bone loss.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2019.115149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!