Excessive exposure to ultraviolet (UV) irradiation from the sun is the primary environmental factor that causes aging of the skin. Most skin diseases caused by UV are attributed to UVB (280-320 nm). The purpose of this study is to investigate the protective effect of diphlorethohydroxycarmalol (DPHC), isolated from the marine brown alga, Ishige okamurae, against UVB-induced photodamage using both in vitro and in vivo models. Results indicate that DPHC remarkably inhibited commercial collagenase and elastase activities. It also reduced intracellular levels of ROS, improved cell viability and collagen content in UVB-irradiated human dermal fibroblasts (HDF cells). In addition, DPHC significantly inhibited activities of intracellular collagenase and elastase and reduced the expression of matrix metalloproteinases (MMPs) and pro-inflammatory cytokines. These events occurred through regulation of nuclear factor kappa B (NF-κB), activator protein 1 (AP-1), and mitogen-activated protein kinases (MAPKs) signaling pathways in UVB-irradiated HDF cells. Furthermore, DPHC also protected against in vivo photodamage by decreasing cell death through reducing lipid peroxidation and inflammatory response via decreasing ROS levels in UVB-irradiated zebrafish. In conclusion, DPHC has strong in vitro and in vivo photoprotective effects and has the potential to be used as an ingredient in pharmaceutical and cosmeceutical industries.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.fct.2019.110963 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!