Inducing laccase activity in white rot fungi using copper ions and improving the efficiency of azo dye treatment with electricity generation using microbial fuel cells.

Chemosphere

Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, Douliu, Yunlin, 64002, Taiwan, ROC; National Yunlin University of Science and Technology, Feng Tay Distinguished Professor, Taiwan, ROC. Electronic address:

Published: March 2020

This work presents a white rot fungus-microbial fuel cell (WRF-MFC) that uses WRF that is grown at its cathode. Adding Cu to the fungi-containing solid medium stimulated WRF-secreting laccase, which catalyzed the redox reaction in the MFC and thereby promoting the generation of electricity. Adding 12.5 mg L Cu to a G. lucidum-containing medium provided the greatest laccase stimulation and increased the laccase activity by a factor of 1.6. Adding 12.5 mg L Cu to the WRF chamber of WRF-MFC increased its decolorization of Acid Orange 7 (AO-7) and increased its power density to 223 mW m, which was 1.77 times that of an MFC without WRF. The enhancement of decolorization and electricity generation improved the performance of the WRF-MFC, indicating that a laccase-catalyzed cathode has great potential effectiveness in microbial fuel cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2019.125304DOI Listing

Publication Analysis

Top Keywords

laccase activity
8
white rot
8
electricity generation
8
microbial fuel
8
fuel cells
8
adding 125 mg l
8
inducing laccase
4
activity white
4
rot fungi
4
fungi copper
4

Similar Publications

Laccases that oxidize low-density polyethylene (LDPE) represent a promising strategy for bioremediation purposes. To rationalize or optimize their PE-oxidative activity, two fundamental factors must be considered: the enzyme's redox potential and its binding affinity/mode towards LDPE. Indeed, a stable laccase-PE complex may facilitate a thermodynamically unfavorable electron transfer, even without redox mediators.

View Article and Find Full Text PDF

Active site-inspired multicopper laccase-like nanozymes for detection of phenolic and catecholamine compounds.

Anal Chim Acta

January 2025

School of Medical Devices, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang, 110016, PR China. Electronic address:

Phenolic compounds are typical organic pollutants which cause severe human health problems due to their teratogenesis, carcinogenesis, neurotoxicity, immunotoxicity and endocrine disruption. Natural laccase is a multicopper oxidase existing in bacteria, plants, and insects, which can accelerate the transformation of phenolic compounds to their less hazardous oxidized products under mild conditions without harmful byproducts. Despite eco-environmentally friendly property of laccase, it still faces constraints of widespread application attribute to its high cost, complex preparation, and vulnerability.

View Article and Find Full Text PDF

Background: Adrenaline and glucose are essential biomarkers in human body for maintaining metabolic balance. Abnormal levels of adrenaline and glucose are associated with various diseases. Therefore, it is important to design portable, on-site devices for rapid adrenaline and glucose analysis to safeguard health.

View Article and Find Full Text PDF

Resistance of Populus davidiana × P. bolleana overexpressing cinnamoyl-CoA reductase gene to Lymantria dispar larvae.

Transgenic Res

January 2025

Key Laboratory of Sustainable Forest Ecosystem Management-Ministry of Education, Northeast Forestry University, Harbin, 150040, China.

Lignin is a crucial defense phytochemical against phytophagous insects. Cinnamoyl-CoA reductase (CCR) is a key enzyme in lignin biosynthesis. In this study, transgenic Populus davidiana × P.

View Article and Find Full Text PDF

Excessive copper induces lignin biosynthesis in the leaves and roots of two citrus species: Physiological, metabolomic and anatomical aspects.

Ecotoxicol Environ Saf

January 2025

College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Key Lab of Soil Ecosystem Health and Regulation, Fujian Province University (Fujian Agriculture and Forestry University), Fuzhou 350002, China. Electronic address:

Excessive copper (Cu) of rhizosphere inhibited the growth and development of citrus seedlings. Lignin deposition on the cell wall promotes plant Cu tolerance. However, the lignin biosynthesis in citrus leaves and roots that respond to Cu toxicity is not fully understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!