Toward Long-Range Entanglement between Electrically Driven Single-Molecule Magnets.

J Phys Chem Lett

Department of Physics , Virginia Tech , Blacksburg , Virginia 24061 , United States.

Published: December 2019

Over the past two decades, several molecules have been explored as possible building blocks of a quantum computer, a device that would provide exponential speedups for a number of problems, including the simulation of large, strongly correlated chemical systems. Achieving strong interactions and entanglement between molecular qubits remains an outstanding challenge. Here, we show that the TbPc single-molecule magnet has the potential to overcome this obstacle because of its sensitivity to electric fields stemming from the hyperfine Stark effect. We show how this feature can be leveraged to achieve long-range entanglement between pairs of molecules using a superconducting resonator as a mediator. Our results suggest that the molecule-resonator interaction is near the edge of the strong-coupling regime and could potentially pass into it given a more detailed, quantitative understanding of the TbPc molecule.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.9b03131DOI Listing

Publication Analysis

Top Keywords

long-range entanglement
8
entanglement electrically
4
electrically driven
4
driven single-molecule
4
single-molecule magnets
4
magnets decades
4
decades molecules
4
molecules explored
4
explored building
4
building blocks
4

Similar Publications

Realizing quantum control and entanglement of particles is crucial for advancing both quantum technologies and fundamental science. Substantial developments in this domain have been achieved in a variety of systems. In this context, ultracold polar molecules offer new and unique opportunities because of their more complex internal structure associated with vibration and rotation, coupled with the existence of long-range interactions.

View Article and Find Full Text PDF

Long-range data transmission in a fault-tolerant quantum bus architecture.

npj Quantum Inf

December 2024

Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Garching, Germany.

We propose a fault-tolerant scheme for generating long-range entanglement at the ends of a rectangular array of qubits of length with a square cross-section of qubits. It is realized by a constant-depth circuit producing a constant-fidelity Bell-pair (independent of ) for local stochastic noise of strength below an experimentally realistic threshold. The scheme can be viewed as a quantum bus in a quantum computing architecture where qubits are arranged on a rectangular 3D grid, and all operations are between neighboring qubits.

View Article and Find Full Text PDF

Biomacromolecular networks with multiscale fibrillar structures are characterized by exceptional mechanical properties, making them attractive architectures for synthetic materials. However, there is a dearth of synthetic polymeric building blocks capable of forming similarly structured networks. Bottlebrush polymers (BBPs) are anisotropic graft polymers with the potential to mimic and replace biomacromolecules such as tropocollagen for the fabrication of synthetic fibrillar networks; however, a longstanding limitation of BBPs has been the lack of rigidity necessary to access the lyotropic ordering that underpins the formation of collagenous networks.

View Article and Find Full Text PDF
Article Synopsis
  • Long-range spin-spin interactions can create nonequilibrium dynamics that enhance the collective spin of quantum ensembles, improving entanglement as the system size increases.
  • The study shows that even short-range interactions in 2D U(1)-symmetric systems can lead to scalable squeezing, particularly in a critical phase that does not exhibit long-range order at finite temperatures.
  • The findings suggest that slow magnetization decay during nonequilibrium dynamics can protect scalable squeezing, paving the way for the creation of large entangled states in various quantum technologies, such as ultracold atoms and superconducting circuits.
View Article and Find Full Text PDF

The chromosome folding problem and how cells solve it.

Cell

November 2024

Institute for Medical Engineering and Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address:

Every cell must solve the problem of how to fold its genome. We describe how the folded state of chromosomes is the result of the combined activity of multiple conserved mechanisms. Homotypic affinity-driven interactions lead to spatial partitioning of active and inactive loci.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!