Traditionally, motion analysis in clinical laboratories using optoelectronic systems (MOCAP) is performed in acquisition volumes of limited size. Given the complexity and cost of MOCAP in larger volumes, action sports cameras (ASC) represent an alternative approach in which the cameras move along with the subject during the movement task. Thus, this study aims to compare ASC against a traditional MOCAP in the perspective of reconstructing walking and running movements in large spatial volumes, which extend over the common laboratory setup. The two systems, consisting of four cameras each, were closely mounted on a custom carrying structure endowed with wheels. Two different acquisition setups, namely steady and moving conditions, were taken into account. A devoted calibration procedure, using the same protocol for the two systems, enabled the reconstruction of surface markers, placed on voluntary subjects, during the two acquisition setups. The comparison was quantitatively expressed in terms of three-dimensional (3D) marker reconstruction and kinematic computation quality. The quality of the marker reconstruction quality was quantified by means of the mean absolute error (MAE) of inter-marker distance and two-stick angle. The kinematic computation quality was quantified by means of the measure of the knee angle reconstruction during walking and running trials. In order to evaluate the camera system and moving camera effects, we used a Wilcoxon rank sum test and a Kruskal Wallis test (post-hoc Tukey), respectively. The Spearman correlation coefficient (ρ) and the Wilcoxon rank sum test were applied to compare the kinematic data obtained by the two camera systems. We found small ASC MAE values (< 2.6mm and 1.3°), but they were significantly bigger than the MOCAP (< 0.7mm and 0.6°). However, for the human movement no significant differences were found between kinematic variables in walking and running acquisitions (p>0.05), and the motion patterns of the right-left knee angles between both systems were very similar (ρ>0.90, p<0.05). These results highlighted the promising results of a system that uses ASC based on the procedure of mobile cameras to follow the movement of the subject, allowing a less constrained movement in the direction in which the structure moves, compared to the traditional laboratory setup.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6850531 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0224182 | PLOS |
Sensors (Basel)
December 2024
Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.
The analysis of running gait has conventionally taken place within an expensive and restricted laboratory space, with wearable technology offering a practical, cost-effective, and unobtrusive way to examine running gait in more natural environments. This pilot study presents a wearable inertial measurement unit (IMU) setup for the continuous analysis of running gait during an outdoor parkrun (i.e.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Faculty of Medicine, Department of Kinesiology, Université Laval, Quebec City, QC G1V OA6, Canada.
Foot strike patterns influence vertical loading rates during running. Running retraining interventions often include switching to a new foot strike pattern. Sudden changes in the foot strike pattern may be uncomfortable and may lead to higher step-to-step variability.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Electrical, Electronic, and Information Engineering "Guglielmo Marconi", University of Bologna, 40127 Bologna, Italy.
Temporal parameters are crucial for understanding running performance, especially in elite sports environments. Traditional measurement methods are often labor-intensive and not suitable for field conditions. This study seeks to provide greater clarity in parameter estimation using a single device by comparing it to the gold standard.
View Article and Find Full Text PDFSensors (Basel)
December 2024
College of Physical Education and Health Engineering, Taiyuan University of Technology, Jinzhong 030600, China.
The application of dynamic data in biomechanics is crucial; traditional laboratory-level force measurement systems are precise, but they are costly and limited to fixed environments. To address these limitations, empirical evidence supports the widespread adoption of portable force-measuring platforms, with recommendations for their ongoing development and enhancement. Taiyuan University of Technology has collaborated with KunWei Sports Technology Co.
View Article and Find Full Text PDFJ Hum Evol
January 2025
Department of Pathology and Anatomical Sciences, University of Missouri, Columbia, MO 65212, USA.
Hominin pelvic form differs dramatically from that of other primates by having more laterally facing iliac blades, a wider sacrum, and a larger, transversely broad pelvic inlet. The orientation of the acetabulum may also differ, plausibly related to differences in load transmission during upright posture and habitual bipedal locomotion, which may, in turn, affect overall pelvic geometry. We compared acetabular orientation in humans, a phylogenetically broad sample of extant anthropoid primates, and fossil hominins including Australopithecus afarensis (A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!