It is well known that mitochondria and the endoplasmic reticulum (ER) play important roles in radiation response, but their functions in radiation-induced bystander effect (RIBE) are largely unclear. In this study, we found that when a small portion of cells in a population of human lung fibroblast MRC-5 cells were precisely irradiated through either the nuclei or cytoplasm with counted microbeam protons, the yield of micronuclei (MN) and the levels of intracellular reactive oxygen species (ROS) in nonirradiated cells neighboring irradiated cells were significantly increased. Mito/ER-tracker staining demonstrated that the mitochondria were clearly activated after nuclear irradiation and ER mass approached a higher level after cytoplasmic irradiation. Moreover, the radiation-induced ROS was diminished by rotenone, an inhibitor of mitochondria activation, but it was not influenced by siRNA interference of , an ER regulation protein. While for nuclear irradiation, rotenone-enhanced radiation-induced ER expression, and siRNA eliminated radiation-induced activation of mitochondria, these phenomena were not observed for cytoplasmic irradiation. Bystander MN was reduced by rotenone but enhanced by siRNA. When the cells were treated with both rotenone and siRNA, the MN yield was reduced for nuclear irradiation but was enhanced for cytoplasmic irradiation. Our results suggest that the organelles of mitochondria and ER have different roles in RIBE with respect to nuclear and cytoplasmic irradiation, and the function of ER is a prerequisite for mitochondrial activation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1667/RR15469.1 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!