Molecular dynamics (MD) simulations have become increasingly popular in studying the motions and functions of biomolecules. The accuracy of the simulation, however, is highly determined by the molecular mechanics (MM) force field (FF), a set of functions with adjustable parameters to compute the potential energies from atomic positions. However, the overall quality of the FF, such as our previously published ff99SB and ff14SB, can be limited by assumptions that were made years ago. In the updated model presented here (ff19SB), we have significantly improved the backbone profiles for all 20 amino acids. We fit coupled φ/ψ parameters using 2D φ/ψ conformational scans for multiple amino acids, using as reference data the entire 2D quantum mechanics (QM) energy surface. We address the polarization inconsistency during dihedral parameter fitting by using both QM and MM in aqueous solution. Finally, we examine possible dependency of the backbone fitting on side chain rotamer. To extensively validate ff19SB parameters, and to compare to results using other Amber models, we have performed a total of ∼5 ms MD simulations in explicit solvent. Our results show that after amino-acid-specific training against QM data with solvent polarization, ff19SB not only reproduces the differences in amino-acid-specific Protein Data Bank (PDB) Ramachandran maps better but also shows significantly improved capability to differentiate amino-acid-dependent properties such as helical propensities. We also conclude that an inherent underestimation of helicity is present in ff14SB, which is (inexactly) compensated for by an increase in helical content driven by the TIP3P bias toward overly compact structures. In summary, ff19SB, when combined with a more accurate water model such as OPC, should have better predictive power for modeling sequence-specific behavior, protein mutations, and also rational protein design. Of the explicit water models tested here, we recommend use of OPC with ff19SB.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jctc.9b00591DOI Listing

Publication Analysis

Top Keywords

amino-acid-specific protein
8
quantum mechanics
8
mechanics energy
8
amino acids
8
ff19sb
6
ff19sb amino-acid-specific
4
protein
4
protein backbone
4
parameters
4
backbone parameters
4

Similar Publications

The successful simulation of proteins by molecular dynamics (MD) critically depends on the accuracy of the applied force field. Here, we modify the AMBER-family ff99SBnmr2 force field through improvements to the side-chain χ dihedral angle potentials in a residue-specific manner using conformational dihedral angle distributions from an experimental coil library as targets. Based on significant deviations observed for the parent force field with respect to the coil library, the χ dihedral angle potentials of seven amino acids were modified, namely, Val, Ser, His, Asn, Trp, Tyr, and Phe.

View Article and Find Full Text PDF
Article Synopsis
  • Oxygen is crucial for biomolecular structures, but its low natural abundance complicates the use of O NMR in research.
  • A new method has been developed for quick and cost-effective O-labeling of specific amino acids in recombinant proteins, using a fast synthesis process with a bacterial expression system.
  • This technique has successfully produced O-labeled proteins from various organisms, enhancing O NMR's accessibility and providing valuable insights into protein structures and interactions at the molecular level.
View Article and Find Full Text PDF

Post-transcriptional modification of RNA regulates gene expression at multiple levels. ALKBH8 is a tRNA-modifying enzyme that methylates wobble uridines in a subset of tRNAs to modulate translation. Through methylation of tRNA-selenocysteine, ALKBH8 promotes selenoprotein synthesis and regulates redox homeostasis.

View Article and Find Full Text PDF
Article Synopsis
  • - Selenocysteine-containing proteins are crucial for maintaining redox balance, and their production relies on a specific modification of tRNA called Um34, which is facilitated by the methyltransferase FTSJ1.
  • - The absence of Um34 causes issues during translation, leading to problems like ribosomal stalling and reduced efficiency in translating selenocysteine at the UGA stop codon.
  • - Cells lacking FTSJ1 show increased sensitivity to oxidative stress and lower melanoma metastasis, indicating that FTSJ1 and Um34 modification are vital for the antioxidant response and could be targeted for therapeutic purposes.
View Article and Find Full Text PDF

The limited availability of therapeutic options for patients with triple-negative breast cancer (TNBC) contributes to the high rate of metastatic recurrence and poor prognosis. Ferroptosis is a type of cell death caused by iron-dependent lipid peroxidation and counteracted by the antioxidant activity of the selenoprotein GPX4. Here, we show that TNBC cells secrete an anti-ferroptotic factor in the extracellular environment when cultured at high cell densities but are primed to ferroptosis when forming colonies at low density.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!