Controlling thermomechanical anisotropy is important for emerging heat management applications such as thermal interface and electronic packaging materials. Whereas many studies report on thermal transport in anisotropic nanocomposite materials, a fundamental understanding of the interplay between mechanical and thermal properties is missing, due to the lack of measurements of direction-dependent mechanical properties. In this work, exceptionally coherent and transparent hybrid Bragg stacks made of strictly alternating mica-type nanosheets (synthetic hectorite) and polymer layers (polyvinylpyrrolidone) were fabricated at large scale. Distinct from ordinary nanocomposites, these stacks display long-range periodicity, which is tunable down to angstrom precision. A large thermal transport anisotropy (up to 38) is consequently observed, with the high in-plane thermal conductivity (up to 5.7 W m K ) exhibiting an effective medium behavior. The unique hybrid material combined with advanced characterization techniques allows correlating the full elastic tensors to the direction-dependent thermal conductivities. We, therefore, provide a first analysis on how the direction-dependent Young's and shear moduli influence the flow of heat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6972559 | PMC |
http://dx.doi.org/10.1002/anie.201911546 | DOI Listing |
Nanomaterials (Basel)
November 2024
Physics Department, State Key Laboratory of Surface Physics, Key Laboratory of Micro and Nano Photonic Structures [Ministry of Education (MOE)], Fudan University, Shanghai 200433, China.
The hybrid heterostructures formed between two-dimensional (2D) materials and organic molecules have gained great interest for their potential applications in advanced photonic and optoelectronic devices, such as solar cells and biosensors. Characterizing the interfacial structure and dynamic properties at the molecular level is essential for realizing such applications. Here, we report a time-resolved sum-frequency generation (TR-SFG) approach to investigate the hybrid structure of polymethyl methacrylate (PMMA) molecules and 2D transition metal dichalcogenides (TMDCs).
View Article and Find Full Text PDFNanophotonics
June 2024
Institute of Experimental Physics, Faculty of Physics, University of Warsaw, ul. Pasteura 5, PL-02-093 Warsaw, Poland.
Exploring the non-Hermitian properties of semiconductor materials for optical applications is at the forefront of photonic research. However, the selection of appropriate systems to implement such photonic devices remains a topic of debate. In this work, we demonstrate that a perovskite crystal, characterized by its easy and low-cost manufacturing, when placed between two distributed Bragg reflectors with an air gap, can form a natural double microcavity.
View Article and Find Full Text PDFUsing the fs-IR laser point-by-point inscription method, parallel-cladding random fiber Bragg gratings (Parallel-CLRFBGs) were fabricated in a single-mode fiber (SMF) as a novel, to the best of our knowledge, filtering device for random fiber lasers (RFLs). The Parallel-CLRFBGs effectively control light scattering and interference, enhancing system feedback through increased backward Rayleigh scattering. Compared to conventional axially cascaded random gratings, gratings aligned in parallel within sub-centimeter cladding improve the integration of a laser system.
View Article and Find Full Text PDFCell Rep Phys Sci
November 2024
Department of Applied Physics, Aalto University, FIN-02150 Espoo, Finland.
Controlled tailoring of atomically thin MXene interlayer spacings by surfactant/intercalants (e.g., polymers, ligands, small molecules) is important to maximize their potential for application.
View Article and Find Full Text PDFTo elucidate the thermal transport mechanisms at interfaces in micro- and nanoscale electronic devices, real-time monitoring of temperature variations at the microscopic and nanoscopic levels is crucial. Micro-nano fiber Bragg grating (FBG) sensors have been demonstrated as effective in-situ optical temperature probes for measuring local temperatures. Time-stretch dispersion Fourier transform (TS-DFT) that enables fast, continuous, single-shot measurements in optical sensing has been integrated with a micro-nano FBG probe (FBG) for local temperature sensing.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!