In the last decades, several approaches were developed to design drug delivery systems to address the multiple biological barriers encountered after administration while safely delivering a payload. In this scenario, bio-inspired and bio-mimetic approaches have emerged as promising solutions to evade the mononuclear phagocytic system while simultaneously negotiating the sequential transport across the various biological barriers. Leukocytes freely circulate in the bloodstream and selectively target the inflamed vasculature in response to injury, infection, and cancer. Recently we have shown the use of biomimetic nanovesicles, called leukosomes, which combine both the physical and biological properties of liposomes and leukocytes, respectively, to selectively deliver drugs to the inflamed vasculature. Here we report the use of leukosomes to target and deliver doxorubicin, a model chemotherapeutic, to tumors in syngeneic murine models of breast cancer and melanoma. Exploiting the inflammatory pathway responsible for recruiting immune cells to the site of injury, leukosomes exhibited increased targeting of cancer vasculature and stroma. Furthermore, delivery of doxorubicin with leukosomes enabled significant tumor growth inhibition compared with free doxorubicin in both breast and melanoma tumors. This study demonstrates the promise of using biomimetic nanovesicles for effective cancer management in solid tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c9bm01766f | DOI Listing |
Pharmaceutics
November 2024
Department of Life and Environmental Sciences, University of Cagliari, S.P. Monserrato-Sestu km 0.700, 09042 Cagliari, Italy.
: Horseradish ( L.) roots-largely used in traditional medicine for their multiple therapeutic effects-are a rich source of health-promoting phytochemicals. However, their efficacy can be compromised by low chemical stability and poor bioavailability.
View Article and Find Full Text PDFPharmaceuticals (Basel)
November 2024
Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
: Drugs exhibiting poor aqueous solubility present a challenge to efficient delivery to the site of action. Spanlastics (a nano, surfactant-based drug delivery system) have emerged as a powerful tool to improve solubility, bioavailability, and delivery to the site of action. This study aimed to better understand factors affecting the physicochemical properties of spanlastics, quantify their effects, and use them to enhance the bioavailability of famotidine (FMT), a model histamine H2 receptor antagonist (BCS class IV).
View Article and Find Full Text PDFInt J Mol Sci
December 2024
School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.
mRNA-based vaccines against the COVID-19 pandemic have propelled the use of nucleic acids for drug delivery. Conventional lipid-based carriers, such as liposomes and nanolipogels, effectively encapsulate and deliver RNA but are hindered by issues such as premature burst release and immunogenicity. To address these challenges, cell membrane-coated nanoparticles offer a promising alternative.
View Article and Find Full Text PDFAntioxidants (Basel)
November 2024
Department of Biomedical Science, Kangwon National University, Chuncheon-si 24341, Gangwon-do, Republic of Korea.
Bone marrow mesenchymal stem cells (BM-MSCs) play a crucial role in bone formation through their ability to differentiate into osteoblasts. Aging, however, detrimentally affects the differentiation and proliferation capacities of BM-MSCs, consequently impairing bone regeneration. Thus, mitigating the aging effects on BM-MSCs is vital for addressing bone-related pathologies.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230032, China.
Glucose oxidase (GOX)-induced starvation is a safe treatment for tumor. However, the non-specific targeting of GOX and the plasticity of tumor metabolism lead to toxic side effects and low tumor mortality. Thus, it is necessary to develop a synergistic strategy with high tumor targeting specificity to enhance the mortality of GOX.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!