Hereditary fructose intolerance (HFI) is a rare inborn disease characterized by a deficiency in aldolase B, which catalyzes the cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate (Fru 1P) to triose molecules. In patients with HFI, ingestion of fructose results in accumulation of Fru 1P and depletion of ATP, which are believed to cause symptoms, such as nausea, vomiting, hypoglycemia, and liver and kidney failure. These sequelae can be prevented by a fructose-restricted diet. Recent studies in aldolase B-deficient mice and HFI patients have provided more insight into the pathogenesis of HFI, in particular the liver phenotype. Both aldolase B-deficient mice (fed a very low fructose diet) and HFI patients (treated with a fructose-restricted diet) displayed greater intrahepatic fat content when compared to controls. The liver phenotype in aldolase B-deficient mice was prevented by reduction in intrahepatic Fru 1P concentrations by crossing these mice with mice deficient for ketohexokinase, the enzyme that catalyzes the synthesis of Fru 1P. These new findings not only provide a potential novel treatment for HFI, but lend insight into the pathogenesis of fructose-induced non-alcoholic fatty liver disease (NAFLD), which has raised to epidemic proportions in Western society. This narrative review summarizes the most recent advances in the pathogenesis of HFI and discusses the implications for the understanding and treatment of fructose-induced NAFLD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11105038PMC
http://dx.doi.org/10.1007/s00018-019-03348-2DOI Listing

Publication Analysis

Top Keywords

aldolase b-deficient
12
b-deficient mice
12
advances pathogenesis
8
hereditary fructose
8
fructose intolerance
8
fructose-induced non-alcoholic
8
non-alcoholic fatty
8
fatty liver
8
liver disease
8
fructose-restricted diet
8

Similar Publications

Aldolase B Deficient Mice Are Characterized by Hepatic Nucleotide Sugar Abnormalities.

J Inherit Metab Dis

January 2025

Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, The Netherlands.

Hereditary fructose intolerance (HFI) is characterized by liver damage and a secondary defect in N-linked glycosylation due to impairment of mannose phosphate isomerase (MPI). Mannose treatment has been shown to be an effective treatment in a primary defect in MPI (i.e.

View Article and Find Full Text PDF

Hereditary fructose intolerance (HFI) is a painful and potentially lethal genetic disease caused by a mutation in aldolase B resulting in accumulation of fructose-1-phosphate (F1P). No cure exists for HFI and treatment is limited to avoid exposure to fructose and sugar. Using aldolase B deficient mice, here we identify a yet unrecognized metabolic event activated in HFI and associated with the progression of the disease.

View Article and Find Full Text PDF

Hepatic glucokinase regulatory protein and carbohydrate response element binding protein attenuation reduce de novo lipogenesis but do not mitigate intrahepatic triglyceride accumulation in Aldob deficiency.

Mol Metab

September 2024

Department of Internal Medicine, Division of Endocrinology and Metabolic Disease, Maastricht University Medical Center+, Maastricht, the Netherlands; Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, the Netherlands; Department of Internal Medicine, CARIM, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht University Medical Center+, Maastricht, the Netherlands. Electronic address:

Article Synopsis
  • The study investigates how fructose 1-phosphate (F1P) influences the process of de novo lipogenesis (DNL) in the liver, specifically focusing on two regulators: glucokinase regulatory protein (GKRP) and carbohydrate response element binding protein (ChREBP).
  • Aldolase B deficient mice, which show increased F1P levels and DNL, were used to assess the effects of manipulating GKRP and ChREBP on lipid synthesis.
  • Results indicated that while knocking out GKRP reduced palmitate synthesis, knocking down ChREBP normalized enzyme expression involved in DNL, highlighting their roles in regulating liver fat accumulation, despite no change in triglyceride levels.
View Article and Find Full Text PDF

Hereditary fructose intolerance (HFI) is a rare inborn disease characterized by a deficiency in aldolase B, which catalyzes the cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate (Fru 1P) to triose molecules. In patients with HFI, ingestion of fructose results in accumulation of Fru 1P and depletion of ATP, which are believed to cause symptoms, such as nausea, vomiting, hypoglycemia, and liver and kidney failure. These sequelae can be prevented by a fructose-restricted diet.

View Article and Find Full Text PDF

Non-alcoholic fatty liver in hereditary fructose intolerance.

Clin Nutr

February 2020

Unit of Metabolism, Cruces University Hospital, Biocruces Bizkaia Health Research Institute, GCV-CIBER de Enfermedades Raras (CIBERER), Plaza de Cruces s/n, Barakaldo, 48903, Spain. Electronic address:

Background: Non-alcoholic fatty liver disease (NAFLD) is characterized by fat accumulation affecting >5% of the liver volume that is not explained by alcohol abuse. It is known that fructose gives rise to NAFLD and it has been recently described that the ingestion of fructose in low amounts in aldolase B deficient mice is associated with the development of fatty liver. Therefore, it is reasonable that patients with HFI (Hereditary Fructose Intolerance) present fatty liver at diagnosis, but its prevalence in patients treated and with adequate follow-up is not well documented in the literature.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!