Protein cages are normally formed by the self-assembly of multiple protein subunits and ferritin is a typical example of a protein cage structure. Ferritin is a ubiquitous multi-subunit iron storage protein formed by 24 polypeptide chains that self-assemble into a hollow, roughly spherical protein cage. Ferritin has external and internal diameters of approximately 12 nm and 8 nm, respectively. Functionally, ferritin performs iron sequestration and is highly conserved in evolution. The interior cavity of ferritin provides a unique reaction vessel to carry out reactions separated from the exterior environment. In nature, the cavity is utilized for sequestration of iron and bio-mineralization as a mechanism to render iron inert and safe from the external environment. Material scientists have been inspired by this system and exploited a range of ferritin superfamily proteins as supramolecular templates to encapsulate different carrier molecules ranging from cancer drugs to therapeutic proteins, in addition to using ferritin proteins as well-defined building blocks for fabrication. Besides the interior cavity, the exterior surface and sub-unit interface of ferritin can be modified without affecting ferritin assembly.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-981-13-9791-2_10 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!