Emerging evidence for crosstalk between Nrf2 and mitochondria in physiological homeostasis and in heart disease.

Arch Pharm Res

Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, 036-8562, Japan.

Published: March 2020

Nrf2 regulates redox homeostasis in cells by coordinately regulating a range of antioxidant enzymes and proteins. An increase in oxidative stress is one of the hallmarks of aging, and Nrf2 protein levels and activity decrease with aging. Decreased mitochondrial functions, such as decreased ATP production, also occur with aging, leading to the increased generation of reactive oxygen species (ROS) and oxidative stress. Thus, understanding the relationships between Nrf2 and the mitochondria is important for clarifying the regulatory mechanisms of aging. It is becoming clear that Nrf2 is activated in a tissue-specific manner in response to mitochondrial or NADPH oxidase-generated ROS. As the heart consists of postmitotic cells that utilize ATP produced mainly by mitochondrial oxidative phosphorylation, cardiomyocytes are equipped with highly sophisticated mitochondrial quality control mechanisms. Consistent with these findings, it has been reported that Nrf2 in the heart is regulated via a specific translational mechanism and that Nrf2 activation confers cardioprotective effects in various disease models. Thus, Nrf2 is a promising target for anti-aging strategies to combat age-related heart diseases, such as age-related cardiomyopathy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12272-019-01188-zDOI Listing

Publication Analysis

Top Keywords

nrf2
8
nrf2 mitochondria
8
oxidative stress
8
emerging evidence
4
evidence crosstalk
4
crosstalk nrf2
4
mitochondria physiological
4
physiological homeostasis
4
heart
4
homeostasis heart
4

Similar Publications

Drugs repurposing in the experimental models of Alzheimer's disease.

Inflammopharmacology

January 2025

Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, ElKasr Elaini Street, Cairo, 11562, Egypt.

The currently approved drugs for Alzheimer's disease (AD) are only for symptomatic treatment in the early stages of the disease but they could not halt the neurodegeneration, additionally, the safety profile of the recently developed immunotherapy is a big issue. This review aims to explain the importance of the drugs repurposing technique and strategy to develop therapy for AD. We illustrated the biological alterations in the pathophysiology of AD including the amyloid pathology, the Tau pathology, oxidative stress, mitochondrial dysfunction, neuroinflammation, glutamate-mediated excitotoxicity, insulin signaling impairment, wingless-related integration site/β-catenin signaling, and autophagy.

View Article and Find Full Text PDF

Ferroptosis, an iron-dependent form of programmed cell death driven by oxidative stress, plays a crucial role in the progression of Alzheimer's disease (AD). Aging diminishes antioxidant systems that maintain iron homeostasis, particularly affecting the glutathione peroxidase (GPX) system, leading to increased ferroptosis and exacerbated neurodegeneration and neuroinflammation in AD. Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor regulating genes involved in antioxidant defense and ferroptosis.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) stands as a major contributor to mortality worldwide, with cigarette smoke being a primary causative factor. Acacetin has been reported to possess lung protective effects. However, the precise role and mechanism of Acacetin in COPD remains elusive.

View Article and Find Full Text PDF

Background: In Alzheimer's disease (AD), histone acetylation is disrupted, suggesting loss of transcriptional control. Moreover, converging evidence suggests an age- and AD-dependent loss of transcription controlled by all-trans-retinoic acid (ATRA), the bioactive metabolite of vitamin A (VA). Antioxidant depletion causes oxidative stress (OS).

View Article and Find Full Text PDF

Aims: The aim of this study was to evaluate the antioxidant and anti-inflammatory effects of marine fungal cerebroside flavuside B (FlaB) on Staphylococcus aureus-infected keratinocytes in in vitro skin wounds and to identify FlaB targets in bacterial and human cells.

Methods And Results: A combination of ELISA, plate spectrofluorimetry, and flow cytometry with fluorescence dye staining, scratch assay, and real-time cell imaging techniques was used to investigate the effects of FlaB on S. aureus-infected HaCaT keratinocytes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!