Myoblasts play a central role during skeletal muscle formation and growth. Precise understanding of myoblast properties is thus indispensable for meat production. Herein, we report the cellular characteristics and gene expression profiles of primary-cultured myoblasts of layer and broiler chickens. Broiler myoblasts actively proliferated and promptly differentiated into myotubes compared to layer myoblasts, which corresponds well with the muscle phenotype of broilers. Transcriptomes of layer and broiler myoblasts during differentiation were quantified by RNA sequencing. Ontology analyses of the differentially expressed genes (DEGs) provided a series of extracellular proteins as putative markers for characterization of chicken myogenic cells. Another ontology analyses demonstrated that broiler myogenic cells are rich in cell cycle factors and muscle components. Independent of these semantic studies, principal component analysis (PCA) statistically defined two gene sets: one governing myogenic differentiation and the other segregating layers and broilers. Thirteen candidate genes were identified with a combined study of the DEGs and PCA that potentially contribute to proliferation or differentiation of chicken myoblasts. We experimentally proved that one of the candidates, enkephalin, an opioid peptide, suppresses myoblast growth. Our results present a new perspective that the opioids present in feeds may influence muscle development of domestic animals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6848216PMC
http://dx.doi.org/10.1038/s41598-019-52946-4DOI Listing

Publication Analysis

Top Keywords

layer broiler
12
myogenic differentiation
8
gene expression
8
skeletal muscle
8
myoblasts layer
8
broiler chickens
8
broiler myoblasts
8
ontology analyses
8
myogenic cells
8
myoblasts
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!