Changing from summer-brown to winter-white pelage or plumage is a crucial adaptation to seasonal snow in more than 20 mammal and bird species. Many of these species maintain nonwhite winter morphs, locally adapted to less snowy conditions, which may have evolved independently. Mountain hares () from Fennoscandia were introduced into the Faroe Islands in 1855. While they were initially winter-white, within ∼65 y all Faroese hares became winter-gray, a morph that occurs in the source population at low frequency. The documented population history makes this a valuable model for understanding the genetic basis and evolution of the seasonal trait polymorphism. Through whole-genome scans of differentiation and single-nucleotide polymorphism (SNP) genotyping, we associated winter coat color polymorphism to the genomic region of the pigmentation gene , previously linked to introgression-driven winter coat color variation in the snowshoe hare (). Lower expression in the skin of winter-gray individuals during the autumn molt suggests that regulatory changes may underlie the color polymorphism. Variation in the associated genomic region shows signatures of a selective sweep in the Faroese population, suggesting that positive selection drove the fixation of the variant after the introduction. Whole-genome analyses of several hare species revealed that the winter-gray variant originated through introgression from a noncolor changing species, in keeping with the history of ancient hybridization between the species. Our findings show the recurrent role of introgression in generating winter coat color variation by repeatedly recruiting the regulatory region of to modulate seasonal coat color change.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6883779 | PMC |
http://dx.doi.org/10.1073/pnas.1910471116 | DOI Listing |
Foods
January 2025
School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
Green peas, with their high moisture content, require effective drying techniques to extend shelf life while preserving quality. Traditional drying methods face challenges due to the dense structure of the seed coat and wax layer, which limits moisture migration. This study investigates cold plasma (CP) pretreatment as a novel approach to enhance drying kinetics and maintain the quality attributes of green peas.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China.
Soybean has outstanding nutritional and medicinal value because of its abundant protein, oil, and flavonoid contents. This crop has rich seed coat colors, such as yellow, green, black, brown, and red, as well as bicolor variants. However, there are limited reports on the synthesis of flavonoids in the soybean seed coats of different colors.
View Article and Find Full Text PDFFoods
December 2024
Department of Microbiology, Graphic Era University, Dehradun 248001, Uttarakhand, India.
The present investigation deals with comparisons drawn among three types of different mustard seed coat colors, namely, Black (), Brown (), and White (), with respect to protein's bio-availability through pepsin digestibility, with and without the involvement of major anti-nutritional factors (glucosinolate type AITC, Allylisothiothiocyanate) and relative food functions. These are validated by means of crude protein determination, precipitated protein isolate preparation for evaluating the fat absorption capacity (FAC), emulsifying activity (EA), emulsion stability (ES), whippability, foam stability (FS), the nitrogen solubility index (NSI), and the protein dispersibility index (PDI). The results indicate that the partial removal of glucosinolates from brown mustard (0.
View Article and Find Full Text PDFGenes (Basel)
December 2024
Inner Mongolia Key Laboratory of Equine Science Research and Technology Innovation, Inner Mongolia Agricultural University, Hohhot 010018, China.
Background/objectives: The Mongolian horse, one of the oldest and most genetically diverse breeds, exhibits a wide variety of coat colors and patterns, including both wild-type and unique features. A notable characteristic of dun Mongolian horses is the presence of Bider markings-symmetrical, black-mottled patterns observed on the shoulder blades. These markings are also seen in Przewalski's horses.
View Article and Find Full Text PDFSci Adv
January 2025
College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!