Alpha (8-12 Hz) and beta (13-30 Hz) oscillations are believed to be involved in motor control. Their modulation with transcranial alternating current stimulation (tACS) has been shown to alter motor behavior and cortical excitability. The aim of the present study was to determine whether tACS applied bilaterally over sensorimotor cortex at 10 Hz and 20 Hz modulates interhemispheric interactions and corticospinal excitability. Thirty healthy volunteers participated in a randomized, cross-over, sham-controlled, double-blind protocol. Sham and active tACS (10 Hz, 20 Hz, 1 mA) were applied for 20 min over bilateral sensorimotor areas. The physiological effects of tACS on corticospinal excitability and interhemispheric inhibition were assessed with transcranial magnetic stimulation. Physiological mirror movements were assessed to measure the overflow of motor activity to the contralateral M1 during voluntary muscle contraction. Bilateral 10 Hz tACS reduced corticospinal excitability. There was no significant effect of tACS on physiological mirror movements and interhemispheric inhibition. Ten Hz tACS was associated with response patterns consistent with corticospinal inhibition in 57% of participants. The present results indicate that application of tACS at the alpha frequency can induce aftereffects in sensorimotor cortex of healthy individuals.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2019.146542DOI Listing

Publication Analysis

Top Keywords

10 hz 20 hz
12
sensorimotor cortex
12
corticospinal excitability
12
transcranial alternating
8
alternating current
8
current stimulation
8
bilateral sensorimotor
8
tacs
8
interhemispheric inhibition
8
physiological mirror
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!