Dysregulation of blood-brain barrier (BBB) transport exacerbates brain damage in acute ischemic stroke. Here, we aimed to investigate the mechanism of this BBB transport dysregulation by studying the localization and function of pannexin (Px) and connexin (Cx) hemichannels in blood-brain barrier endothelial cells of rat (TR-BBB13 cells) and human (hCMEC/D3 cells) under acute ischemic stroke-mimicking oxygen/glucose deprivation (OGD) and extracellular Ca ([Ca])-free conditions. TR-BBB13 cells showed increased uptake of hemichannel-permeable sulforhodamine 101, and this increase was markedly inhibited by carbenoxolone, a hemichannel inhibitor. Transcripts of Px1 and Cx43 were detected in TR-BBB13 cells and freshly isolated brain microvascular endothelial cells. The basal compartment-to-cell uptake of hemichannel-permeable propidium iodide was selectively enhanced in hCMEC/D3 cells under [Ca]-free conditions in the basal Transwell chamber. Immunohistochemical analysis revealed the predominant localization of Cx43 on the lateral membranes of hCMEC/D3 cells. [H]Taurine uptake by hCMEC/D3 cells was significantly reduced in the absence of [Ca]. Functional knock-down of Px1 and Cx43 with mimetic peptides significantly inhibited the increase of ATP release from hCMEC/D3 cells under [Ca]-free conditions. These results suggest that polarized Px1/Cx43 hemichannel opening in brain capillary endothelial cells under acute ischemic stroke-mimicking conditions contributes to dysregulation of BBB transport function, resulting in release of intracellular taurine and ATP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.neuint.2019.104600 | DOI Listing |
J Physiol
January 2025
Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.
Ischaemic stroke is a leading cause of death and disability. Circulating extracellular vesicles (EVs) post-stroke may help brain endothelial cells (BECs) counter ischaemic injury. However data on how EVs from ischaemic stroke patients, considering injury severity, affect these cells are limited.
View Article and Find Full Text PDFArch Gerontol Geriatr
December 2024
Zhejiang Provincial Key Lab of Geriatrics, Department of Geriatrics, Zhejiang Hospital, Hangzhou, Zhejiang, 310013, PR China. Electronic address:
Ischemic stroke, a severe cerebrovascular disease, is particularly prevalent among the elderly. Rsearch has indicated that histone deacetylases (HDACs) are pivotal in the pathogenesis of ischemic stroke. We introduce a novel HDACs inhibitor, HDI-1, as a potential therapeutic strategy for this condition.
View Article and Find Full Text PDFBioorg Chem
December 2024
Department of Pharmaceutics, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia.
Red grapes contain resveratrol (Resv), a polyphenol with anti-inflammatory, anti-diabetic, and anticancer properties. In this study, in silico molecular docking was used to assess the binding affinity of Resv to target proteins. Resv was encapsulated in PEGylated liposomes (LNPs) using Phospholipon 90G, cholesterol, and DSPE-mPEG.
View Article and Find Full Text PDFMicrobiol Spectr
December 2024
NuGut Research Platform, School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.
Unlabelled: Microbiota-released extracellular vesicles (MEVs) have emerged as a key player in intercellular signaling. However, their involvement in the gut-brain axis has been poorly investigated. We hypothesize that MEVs cross host cellular barriers and deliver their cargoes of bioactive compounds to the brain.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
December 2024
Vascular Physiology Laboratory, Department of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile (H.S., B.I., M.C., F.T., E.E.-G., J.A., C.E.).
Background: The physiopathology of life-threatening cerebrovascular complications in preeclampsia is unknown. We investigated whether disruption of the blood-brain barrier, generated using circulating small extracellular vesicles (sEVs) from women with preeclampsia or placentae cultured under hypoxic conditions, impairs the expression of tight junction proteins, such as CLDN5 (claudin-5), mediated by VEGF (vascular endothelial growth factor), and activation of KDR (VEGFR2 [VEGF receptor 2]).
Methods: We perform a preclinical mechanistic study using sEVs isolated from plasma of pregnant women with normal pregnancy (sEVs-NP; n=9), sEVs isolated from plasma of women with preeclampsia (sEVs-PE; n=9), or sEVs isolated from placentas cultured in normoxia (sEVs-Nor; n=10) or sEVs isolated from placentas cultured in hypoxia (sEVs-Hyp; n=10).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!