Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcjo.2019.06.010DOI Listing

Publication Analysis

Top Keywords

multimodal imaging-guided
4
imaging-guided management
4
management nonangiomatous
4
nonangiomatous proliferation
4
proliferation optic
4
optic disc
4
disc case
4
case von
4
von hippel-lindau
4
hippel-lindau disease
4

Similar Publications

Targeting the peculiarities of tumor tissue microenvironment different from normal tissue, such as lower pH and overexpression of hydrogen peroxide is the key to effective treatment. In this study, acid-responsive Z-scheme heterojunctions polyglycolated MoS/CoFeO (MoS = molybdenum disulfide, CoFeO = cobalt ferrite) was synthesized using a two-step hydrothermal method, designated as MSCO-PEG, guided by dual modes of photoacoustic imagine (PAI) and nuclear magnetic imaging (MRI). MSCO-PEG (PEG = polyethylene glycol) responded to the acidic environment of tumor tissues and overexpression of hydrogen peroxide to turn on multimodal synergistic treatment of tumor cells under near-infrared-II (NIR-II) illumination.

View Article and Find Full Text PDF

Colon cancer is one kind of malignant digestive tract tumor with high morbidity and mortality worldwide, treatments for which still face great challenges. Recently emerged intervention strategies such as phototherapy and gas therapy have displayed promising effects in the treatment of colon cancer, but their application are still hindered due to insufficient tumor targeting and deeper tissue penetrating capacity. Herein, in the present study, we developed one theranostic nanoplatform Cet-CDs-SNO (CCS) to realize multimodal imaging-guided synergistic colon cancer therapy.

View Article and Find Full Text PDF

Biomimetic Metallacage Nanoparticles with Aggregation-Induced Emission for NIR-II Fluorescence Imaging-Guided Synergistic Immuno-Phototherapy of Tumors.

ACS Appl Mater Interfaces

December 2024

Key Laboratory of Organosilicon Chemistry and Materials Technology of Ministry of Education, College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, 311121 Hangzhou, P. R. China.

The integration of theranostics, which combines diagnostics with therapeutics, has markedly improved the early detection of diseases, precise medication management, and assessment of treatment outcomes. In the realm of oncology, organoplatinum-based supramolecular coordination complexes (SCCs) that can coload therapeutic agents and imaging molecules have emerged as promising candidates for multimodal theranostics of tumors. To address the challenges of tumor-targeted delivery and multimodal theranostics for SCCs, this study employs a cell membrane cloaking strategy to fabricate biomimetic metallacage nanoparticles (MCNPs) with multimodal imaging capabilities and homologous targeting capabilities.

View Article and Find Full Text PDF

Traditional tumor treatment faces great challenge owning to inherent drawbacks. Activatable prodrugs with multi-modality therapeutic capacity are highly desired. In this consideration, a responsiveness-released multi-in-one nanoplatform, PLGA-PEG@HC, toward cervical cancer therapy was innovatively developed.

View Article and Find Full Text PDF

Facile Alkyne Assembly-Enabled Functional Au Nanosheets for Photoacoustic Imaging-Guided Photothermal/Gene Therapy of Orthotopic Glioblastoma.

J Am Chem Soc

December 2024

Collaborative Innovation Center of Biomedical Functional Materials of Jiangsu Province, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.

Treatment of glioblastoma (GBM) remains challenging due to the presence of blood-brain barrier (BBB) and tumor heterogeneity. Herein, Au nanosheets (AuNSs) functionalized with RGD peptides and small interfering RNA (siRNA), referred to as AuNSs-RGD-C≡C-siRNA (ARCR), are prepared to achieve multimodal therapy for GBM. The AuNSs with a large modifiable surface area, intriguing photothermal conversion efficiency (50.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!