Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inflammation and oxidative stress contribute to the progression of acute lung injury (ALI). Galectin-1 (Gal-1) has important anti-inflammatory properties in renal ischemia-reperfusion injury, arthritis, uveitis, and hepatitis. However, whether Gal-1 could protect against ALI is still poorly elucidated. The current study aimed to investigate the protective effects of Gal-1 against lipopolysaccharide (LPS)-induced ALI and the underlying mechanisms. Accordingly, we found that pretreatment with Gal-1 attenuated the lung tissue injury induced by LPS, with the recovery of lung function, protecting against the production of pro-inflammatory cytokines and oxidative stress. We also confirmed the therapeutic potential of Gal-1 on the survival rate of LPS-challenged mice. In vitro studies demonstrated the protective effects of exogenous Gal-1 through downregulating pro-inflammatory cytokines release and oxidative stress in primary macrophages challenged by LPS. In addition, Gal-1 suppressed TXNIP-NLRP3 inflammasome activation in ALI mice and LPS-treated primary macrophages partly through directly binding to the NLRP3 protein. Gal-1 alleviated LPS-induced lung injury via activation of Nrf-2, which may be associated with AMPK phosphorylation. Collectively, our experimental results firstly provided the support that Gal-1 effectively protected against LPS-induced ALI via suppression of inflammation response and oxidative stress, which were largely dependent on the upregulation of the Nrf2 pathway via phosphorylation of AMPK. These results suggest that Gal-1 could be a valuable therapeutic candidate in the treatment of ALI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.freeradbiomed.2019.11.011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!