Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Two-dimensional coherent photocurrent spectroscopies directly probe the electronic states and processes that are relevant to the performance of a photovoltaic device. In this Letter, we apply two-pulse nonlinear photocurrent spectroscopy to a photovoltaic device based on layered perovskite quantum wells. The method effectively decomposes the photovoltaic response into contributions from separate quantum wells and excited-state species (i.e., either single excitons or biexcitons). Our experiments show that the efficiency of photocurrent generation increases with the size of the quantum well. Overall, the results suggest that energy funneling processes in layered perovskites, which are most prominent in transient absorption spectroscopies, are largely irrelevant to the function of a photovoltaic cell.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.9b02959 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!