Computational/in silico methods in drug target and lead prediction.

Brief Bioinform

Division of Human Genetics, Department of Pathology, University of Cape Town, Observatory 7925, South Africa.

Published: September 2020

Drug-like compounds are most of the time denied approval and use owing to the unexpected clinical side effects and cross-reactivity observed during clinical trials. These unexpected outcomes resulting in significant increase in attrition rate centralizes on the selected drug targets. These targets may be disease candidate proteins or genes, biological pathways, disease-associated microRNAs, disease-related biomarkers, abnormal molecular phenotypes, crucial nodes of biological network or molecular functions. This is generally linked to several factors, including incomplete knowledge on the drug targets and unpredicted pharmacokinetic expressions upon target interaction or off-target effects. A method used to identify targets, especially for polygenic diseases, is essential and constitutes a major bottleneck in drug development with the fundamental stage being the identification and validation of drug targets of interest for further downstream processes. Thus, various computational methods have been developed to complement experimental approaches in drug discovery. Here, we present an overview of various computational methods and tools applied in predicting or validating drug targets and drug-like molecules. We provide an overview on their advantages and compare these methods to identify effective methods which likely lead to optimal results. We also explore major sources of drug failure considering the challenges and opportunities involved. This review might guide researchers on selecting the most efficient approach or technique during the computational drug discovery process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7673338PMC
http://dx.doi.org/10.1093/bib/bbz103DOI Listing

Publication Analysis

Top Keywords

drug targets
16
drug
9
computational methods
8
drug discovery
8
targets
6
methods
5
computational/in silico
4
silico methods
4
methods drug
4
drug target
4

Similar Publications

Background: To assess the impact of attaining aggressive beta-lactam pharmacokinetic/pharmacodynamic (PK/PD) targets on clinical efficacy in critical orthotopic liver transplant (OLT) recipients with documented early Gram-negative infections.

Methods: OLT recipients admitted to the post-transplant ICU between June 2021 and May 2024 having documented Gram-negative infections treated with targeted therapy continuous infusion (CI) beta-lactams, and undergoing therapeutic drug monitoring (TDM)-guided beta-lactam dosing adjustment in the first 72 hours were prospectively enrolled. Free steady-state concentrations (fCss) of beta-lactams (BL) and/or of beta-lactamase inhibitors (BLI) were calculated, and aggressive PK/PD target attainment was measured.

View Article and Find Full Text PDF

Semi-Synthesis of Dimeric Cannabidiol Derivatives and Evaluation of their Affinity at Neurological Targets.

J Nat Prod

January 2025

Department of Drug Discovery and Biomedical Sciences, College of Pharmacy, University of South Carolina, Columbia, South Carolina 29208, United States.

Cannabidiol (CBD) is a natural product associated with a wide range of biological and therapeutic activities. Despite the widespread cultural acceptance of CBD as a medicinal agent, much remains to be determined regarding its precise mechanism(s) of action in treating multiple conditions. CBD has been shown to promiscuously interact with several neurological targets with varying affinities.

View Article and Find Full Text PDF

Structure-guided engineering of a mutation-tolerant inhibitor peptide against variable SARS-CoV-2 spikes.

Proc Natl Acad Sci U S A

January 2025

Cellular and Structural Physiology Laboratory, Advanced Research Initiative, Institute of Integrated Research, Institute of Science Tokyo, Bunkyo-ku, Tokyo 113-8510, Japan.

Pathogen mutations present an inevitable and challenging problem for therapeutics and the development of mutation-tolerant anti-infective drugs to strengthen global health and combat evolving pathogens is urgently needed. While spike proteins on viral surfaces are attractive targets for preventing viral entry, they mutate frequently, making it difficult to develop effective therapeutics. Here, we used a structure-guided strategy to engineer an inhibitor peptide against the SARS-CoV-2 spike, called CeSPIACE, with mutation-tolerant and potent binding ability against all variants to enhance affinity for the invariant architecture of the receptor-binding domain (RBD).

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a growing global health problem, affecting ∼1 billion people. This condition is well established to have a heritable component with strong familial clustering. With the extraordinary breakthroughs in genetic research techniques coupled with their application to large-scale biobanks, the field of genetics in MASLD has expanded rapidly.

View Article and Find Full Text PDF

Solution Blow Spinning: An Emerging Nanomaterials-Based Wound-Care Technology.

J Biomed Mater Res B Appl Biomater

February 2025

Department of Bioengineering, Clemson University, Clemson, South Carolina, USA.

Application of one-dimensional nanofibers have witnessed exponential growth over the past few decades and are still emerging with their excellent physicochemical and electrical properties. The driving force behind this intriguing transition lies in their unique high surface-to-volume ratio, ubiquitous nanodomains, improved tensile strength, and flexibility to incorporate deliberate functionalities required for specific and advanced applications. Besides numerous benefits, nanomaterials may adversely interact with biological tissues and potentially be cytotoxic and carcinogenic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!