Is a blue-red light a good elicitor of phenolic compounds in the family Droseraceae? A comparative study.

J Photochem Photobiol B

Unit of Botany and Plant Physiology, Institute of Plant Biology and Biotechnology, Faculty of Biotechnology and Horticulture, University of Agriculture in Krakow, 29 Listopada 54, 31-425 Krakow, Poland. Electronic address:

Published: December 2019

Plants from the family Droseraceae, especially Drosera sp. and Dionaea sp., are naturally rich in phenolic derivatives such as plumbagin, among others. Plumbagin is known both for its pharmacological significance and its protective properties against light stress. Light stress - high light intensity or/and light spectral composition - activates plants' response mechanisms including, among others, hormonal (salicylic acid, jasmonic acid) pathways and secondary metabolite (phenolic compounds, proline) pathways. Short-wavelength radiation, due to its high energy, will induce the synthesis of protective secondary metabolites, including those with pharmaceutical properties. The aim of the study was to describe and compare acclimation strategies of Drosera peltata and Dionaea muscipula to blue-red light in the context of phenolic compound accumulation, and salicylic acid, jasmonic acid and proline synthesis. For the first time, differences in the responses of D. muscipula and D. peltata to blue-red light (in the ratio 6:1) were established. In Dionaea sp., it was associated with the use of redox equivalents (in particular, plastoquinone pool) for the synthesis of primary metabolites used in the process of growth and development. In Drosera sp., a rapid adjustment of redox state led to the synthesis of secondary metabolites, constituting a reservoir of carbon skeletons and allowing for a quick defence response to stress factors. In both species, blue-red light did not induce the jasmonic acid pathway. However, the salicylic acid pathway was induced as an alternative to the phenolic compound synthesis pathway. Nevertheless, the applied blue-red light was not an effective elicitor of phenolic compounds in the plants examined.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphotobiol.2019.111679DOI Listing

Publication Analysis

Top Keywords

blue-red light
20
phenolic compounds
12
salicylic acid
12
jasmonic acid
12
elicitor phenolic
8
light
8
light stress
8
acid jasmonic
8
secondary metabolites
8
phenolic compound
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!