Antibacterial activity of free or encapsulated selected phenylpropanoids against Escherichia coli and Staphylococcus epidermidis.

J Appl Microbiol

Bioactive Molecules Research Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, Section II, Lebanese University, Beirut, Lebanon.

Published: March 2020

Aims: Antibacterial activities of phenylpropenes (PPs) (eugenol, isoeugenol, estragole and trans-anethole) and hydroxycinnamic acids (HCAs) (p-coumaric, caffeic and ferulic acids) were assessed against Escherichia coli and Staphylococcus epidermidis. Effect of cyclodextrin and liposome encapsulation on the PPs activity was also evaluated.

Methods And Results: All PPs inhibited the bacterial growth in the hundred micromolar range, while HCAs did not, as determined by broth macrodilution. Anethole and estragole showed a higher efficiency than eugenol and isoeugenol, and E. coli was more susceptible than S. epidermidis. Hydroxypropyl-β-cyclodextrin/PP complexes and anethole-loaded Lipoid S100-liposomes were prepared by freeze-drying and ethanol injection respectively. Both formulations were substantially less active than free PPs. For instance, E. coli growth inhibition was about 14% for all HP-β-CD/PP complexes evaluated at MIC values of free PPs (P < 0·05), and about 12% for liposomal anethole evaluated at minimal bactericidal concentration value of free anethole (P < 0·05).

Conclusions: Hydrophobicity appears to be crucial for PPs antibacterial activity. Encapsulation in cyclodextrin and liposome seems to retain the PPs preventing their interaction with bacteria.

Significance And Impact Of The Study: This study highlights the structural features of simple phenylpropanoids related to their antibacterial activity. The limitations of conventional encapsulation systems on the activity of PPs should be considered in future applications.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jam.14516DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
coli staphylococcus
8
staphylococcus epidermidis
8
eugenol isoeugenol
8
free pps
8
pps
5
antibacterial activity
4
activity free
4
free encapsulated
4
encapsulated selected
4

Similar Publications

Surface Fluorination of Silicone Rubber with Enhanced Stain Resistance and Slip Properties.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Polymer Materials Engineering, College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, P.R. China.

Silicone rubber (SR) holds significant potential for everyday wearable devices due to its inherent sweat resistance and flexibility. However, its broader applicability is constrained by poor oil resistance and a suboptimal slip performance. In this study, we developed an SR with durable oil resistance and enhanced slip properties by forming a covalently bonded barrier layer on its surface through a one-step in situ fluorination reaction using F/N.

View Article and Find Full Text PDF

Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.

View Article and Find Full Text PDF

Production of biologically active recombinant salmon calcitonin in Escherichia coli and fish cell line.

Arch Microbiol

January 2025

Aquatic Animal Health Laboratory, PG & Research Department of Zoology, C. Abdul Hakeem College, Melvisharam, Ranipet, Tamil Nadu, 632509, India.

Salmon calcitonin is a small peptide hormone synthesised and released by a specialised gland called ultimobranchial gland in fish. This hormone has been used to treat osteoporosis for over 50 years. The aim of this study was to compare the efficacy of five repeats of salmon calcitonin (5sCT) produced in two different hosts (bacteria and fish cell line).

View Article and Find Full Text PDF

Self-assembling ferritin nanoparticle technology is a widely used vaccine development platform for enhancing the efficacy of subunit vaccines by displaying multiple antigens on nanocages. The dengue virus (DENV) envelope domain III (EDIII) protein, the most promising antigen for DENV, has been applied in vaccine development, and it is essential to evaluate the relative immunogenicity of the EDIII protein and EDIII-conjugated ferritin to show the efficiency of the ferritin delivery system compared with EDIII. In this study, we optimized the conditions for the expression of the EDIII protein in , protein purification, and refolding, and these optimization techniques were applied for the purification of EDIII ferritin nanoparticles.

View Article and Find Full Text PDF

Magnolol (MG) and honokiol (HK) are bioactive compounds extracted from and trees with significant pharmacological properties, including antioxidant and antibacterial activity. However, their poor water solubility and low bioavailability limit the therapeutic potential. To address these limitations, this study aims to develop MG and HK formulations by co-electrospinning using custom-synthesized β-cyclodextrin-oligolactide (β-CDLA) derivatives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!