We report the first proof of concept for a nonaqueous, all-organic semisolid flow battery (SSFB) using suspensions of 10-methylphenothiazine@Ketjen black and thioxanthone@Ketjen black dispersed in tetraethylammonium hexafluorophosphate/acetonitrile as the cathode and anode, respectively. A proof of principle cell with an open circuit voltage of 2.35 V demonstrated an average coulombic efficiency of 83% within the voltage range 3.0-0 V. This study provides a potential path for developing new high energy density and cost-effective nonaqueous organic SSFBs.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c9cc07937hDOI Listing

Publication Analysis

Top Keywords

nonaqueous organic
8
semisolid flow
8
flow battery
8
organic semisolid
4
battery report
4
report proof
4
proof concept
4
concept nonaqueous
4
nonaqueous all-organic
4
all-organic semisolid
4

Similar Publications

Nanodots of Transition Metal Sulfides, Carbonates, and Oxides Obtained Through Spontaneous Co-Precipitation with Silica.

Nanomaterials (Basel)

December 2024

Material Science, BASF SE, RGA/BM-B007, Carl-Bosch-Str. 38, D-67056 Ludwigshafen, Germany.

The controlled formation and stabilization of nanoparticles is of fundamental relevance for materials science and key to many modern technologies. Common synthetic strategies to arrest growth at small sizes and prevent undesired particle agglomeration often rely on the use of organic additives and require non-aqueous media and/or high temperatures, all of which appear critical with respect to production costs, safety, and sustainability. In the present work, we demonstrate a simple one-pot process in water under ambient conditions that can produce particles of various transition metal carbonates and sulfides with sizes of only a few nanometers embedded in a silica shell, similar to particles derived from more elaborate synthesis routes, like the sol-gel process.

View Article and Find Full Text PDF

In this work, a comparison of the photocatalytic activity of free-standing Cu-based nanoparticle mixtures and spin-coated nanoparticle films under visible-light radiation is conducted. Herein, CuO, CuO-Cu, CuO-CuN-Cu, and CuN-Cu nanoparticle mixtures were successfully synthesized by a non-aqueous sol-gel route and then deposited on a glass substrate by spin-coating. The surface chemistry of the nanoparticles studied by X-ray photoelectron spectroscopy (XPS) allowed elucidating the nanoparticle synthesis mechanism.

View Article and Find Full Text PDF

Electrochemical CO reduction reaction (CO-RR) in non-aqueous electrolytes offers significant advantages over aqueous systems, as it boosts CO solubility and limits the formation of HCO and CO anions. Metal-organic frameworks (MOFs) in non-aqueous CO-RR makes an attractive system for CO capture and conversion. However, the predominantly organic composition of MOFs limits their electrical conductivity and stability in electrocatalysis, where they suffer from electrolytic decomposition.

View Article and Find Full Text PDF
Article Synopsis
  • * A neutral Np(VI) complex was successfully used to establish a reversible 1-electron redox couple in both protic and aprotic organic solvents, characterized through electrochemical and spectroscopic methods.
  • * The research shows that hydrogen bonding with oxo groups and water stabilizes the Np(V) species, supporting the findings about the reduction process and suggesting a unique redox behavior in this system.
View Article and Find Full Text PDF
Article Synopsis
  • Strong polyelectrolytes are flexible macromolecules that can disperse in water and interact with charged species in various applications, but their controlled synthesis and characterization pose challenges.
  • The study focuses on creating strong polyanions using poly(3-isobutoxysulphopropyl methacrylate) by deprotection with iodide salts, yielding polyanions with diverse properties based on counterion size.
  • The resulting amphiphilic macromolecules can form micelles in water, maintaining consistent hydrophilic and hydrophobic segments while allowing for varied polyanionic characteristics.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!