Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The title com-pound, CHNO, consists of ethyl 2-(1,2,3,4-tetra-hydro-2-oxo-quinolin-1-yl)acetate and 4-[(2-eth-oxy-2-oxoeth-yl)(phen-yl)carbomoyl] units, where the oxo-quinoline unit is almost planar and the acetate substituent is nearly perpendicular to its mean plane. In the crystal, C-H⋯O and C-H⋯O (Oxqn = oxoquinolin, Ethx = eth-oxy, Phyl = phenyl and Carbx = carboxyl-ate) weak hydrogen bonds link the mol-ecules into a three-dimensional network sturucture. A π-π inter-action between the constituent rings of the oxo-quinoline unit, with a centroid-centroid distance of 3.675 (1) Å may further stabilize the structure. Both terminal ethyl groups are disordered over two sets of sites. The ratios of the refined occupanies are 0.821 (8):0.179 (8) and 0.651 (18):0.349 (18). The Hirshfeld surface analysis of the crystal structure indicates that the most important contributions for the crystal packing are from H⋯H (53.9%), H⋯O/O⋯H (28.5%) and H⋯C/C⋯H (11.8%) inter-actions. Weak inter-molecular hydrogen-bond inter-actions and van der Waals inter-actions are the dominant inter-actions in the crystal packing. Density functional theory (DFT) geometric optimized structures at the B3LYP/6-311G(d,p) level are com-pared with the experimentally determined mol-ecular structure in the solid state. The HOMO-LUMO mol-ecular orbital behaviour was elucidated to determine the energy gap.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6829727 | PMC |
http://dx.doi.org/10.1107/S2056989019014154 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!