Structural biology generally provides static snapshots of protein conformations that can provide information on the functional mechanisms of biological systems. Time-resolved structural biology provides a means to visualize, at near-atomic resolution, the dynamic conformational changes that macromolecules undergo as they function. X-ray free-electron-laser technology has provided a powerful tool to study enzyme mechanisms at atomic resolution, typically in the femtosecond to picosecond timeframe. Complementary to this, recent advances in the resolution obtainable by electron microscopy and the broad range of samples that can be studied make it ideally suited to time-resolved approaches in the microsecond to millisecond timeframe to study large loop and domain motions in biomolecules. Here we describe a cryo-EM grid preparation device that permits rapid mixing, voltage-assisted spraying and vitrification of samples. It is shown that the device produces grids of sufficient ice quality to enable data collection from single grids that results in a sub-4 Å reconstruction. Rapid mixing can be achieved by blot-and-spray or mix-and-spray approaches with a delay of ∼10 ms, providing greater temporal resolution than previously reported mix-and-spray approaches.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6830222PMC
http://dx.doi.org/10.1107/S2052252519011345DOI Listing

Publication Analysis

Top Keywords

cryo-em grid
8
grid preparation
8
preparation device
8
time-resolved structural
8
structural biology
8
rapid mixing
8
mix-and-spray approaches
8
device time-resolved
4
structural studies
4
studies structural
4

Similar Publications

CryoCrane: an open-source GUI for analyzing cryo-EM screening data sets.

Acta Crystallogr F Struct Biol Commun

February 2025

Institute for Biochemistry and Biology, University of Potsdam, Am Neuen Palais 10, 14469 Potsdam, Germany.

Screening of cryo-EM samples is essential for the generation of high-resolution cryo-EM structures. Often, it is cumbersome to correlate the appearance of specific grid squares and micrograph quality. Here, CryoCrane (Correlate atlas and exposures), a visualization tool for cryo-EM screening data, is presented.

View Article and Find Full Text PDF

Time-resolved cryo-EM (TRCEM) makes it possible to provide structural and kinetic information on a reaction of biomolecules before the equilibrium is reached. Several TRCEM methods have been developed in the past to obtain key insights into the mechanism of action of molecules and molecular machines on the time scale of tens to hundreds of milliseconds, which is unattainable by the normal blotting method. Here we present our TRCEM setup utilizing a polydimethylsiloxane (PDMS)-based microfluidics chip assembly, comprising three components: a PDMS-based, internally SiO-coated micromixer, a glass-capillary microreactor, and a PDMS-based microsprayer for depositing the reaction product onto the EM grid.

View Article and Find Full Text PDF

Cryogenic Electron Microscopy of Rift Valley Fever Virus.

Methods Mol Biol

December 2024

Department of Biochemistry and Molecular Biology, University of Texas Medical Branch at Galveston, Galveston, TX, USA.

Rift Valley fever virus (RVFV) is an important livestock and human pathogen. It is also a potential bioweapon owing to its ability to spread by aerosols. It is an enveloped virus containing surface protrusions composed of two viral glycoproteins, G and G; the viral core contains ribonucleoprotein complexes.

View Article and Find Full Text PDF
Article Synopsis
  • * Plunge-freezing samples at higher temperatures presents challenges such as condensation and maintaining stable temperatures, which can affect results.
  • * The paper proposes solutions to reduce condensation and temperature fluctuations by preheating equipment and controlling humidity, with successful applications shown using poly(N-isopropylacrylamide) microgels that react to temperature changes.
View Article and Find Full Text PDF

Embedding biomolecules in vitreous ice of optimal thickness is critical for structure determination by cryo-electron microscopy. Ice thickness assessment and selection of suitable holes for data collection are currently part of time-consuming preparatory routines performed on expensive electron microscopes. To address this challenge, a routine has been developed to measure ice thickness during sample preparation using an optical camera integrated in the VitroJet.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!