The herbal products, sold worldwide as medicines or foods, are perceived as low risk because they are considered natural and thus safe. The quality of these products is ineffectively regulated and controlled. The growing evidence for their lack of authenticity is causing deep concern, but the scale of this phenomenon at the global, continental or national scale remains unknown. We analyzed data reporting the authenticity, as detected with DNA-based methods, of 5,957 commercial herbal products sold in 37 countries, distributed in all six inhabited continents. Our global survey shows that a substantial proportion (27%) of the herbal products commercialized in the global marketplace is adulterated when their content was tested against their labeled, claimed ingredient species. The adulterated herbal products are distributed across all continents and regions. The proportion of adulterated products varies significantly among continents, being highest in Australia (79%), South America (67%), lower in Europe (47%), North America (33%), Africa (27%) and the lowest in Asia (23%). The commercial HPs' authenticity among the 37 countries included in our global analysis ranges between 0 and 100% from the total number of product reported for each specific national marketplace. For 9 countries, more than 100 products were successfully DNA-based authenticated and reported. From these countries, the highest percentage of adulterated commercial HPs was reported for Brazil (68%), followed distantly by Taiwan (32%), India (31%), USA (29%), followed closely by Malaysia (24%), Japan (23%), South Korea (23%), Thailand (20%), and China (19%). Our results confirm the large-scale presence of adulterated herbal products throughout the global market. The adulterated herbal products contain undeclared contaminant, substitute, and filler species, or none of the labeled species, which all may be accidental or intentional, economically-motivated and fraudulent. Due to the ever-increasing analytical sensitivity of the high throughput DNA sequencing, increasingly used for the untargeted, simultaneous multi-taxa identification, the proportion of adulterated HPs detected on the global market is expected to increase. In the context of the increasing demand for HPs, the limited supply of raw materials derived from many plant species, some of which being already nationally or internationally protected and having various degrees of trade restrictions, adds up to the differences and discrepancies between national HPs' regulatory frameworks and further increases the risks of adulteration of many types of herbal products. The globally widespread adulteration is a serious threat to consumers' well-being and safety, in spite of herbal products' claimed or expected health benefits.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6822544PMC
http://dx.doi.org/10.3389/fphar.2019.01227DOI Listing

Publication Analysis

Top Keywords

herbal products
32
adulterated herbal
12
products
11
herbal
9
commercial herbal
8
globally widespread
8
widespread adulteration
8
products sold
8
proportion adulterated
8
global market
8

Similar Publications

Ethnopharmacological Relevance: Zuo Gui Wan (ZGW) is a well-known traditional Chinese medicine decoction used for approximately 400 years to treat age-related degenerative conditions, including cognitive impairment in older adults, osteoporosis, and general aging. However, the mechanism of action for ZGW remains unclear.

Aims Of The Study: This study aims to investigate the efficacy of ZGW in improving cognitive function in Alzheimer's disease (AD) animal models and to explore the underlying mechanisms, presenting a novel perspective in the field.

View Article and Find Full Text PDF

possesses promising flavonoid secondary metabolites. However, translation of these compounds into clinical practice for neurological disease treatment is halted as the toxicity and safety profile of the plant extracts are yet to be determined. This study was conducted to assess the acute oral toxicity and subacute neurotoxicity that could be imposed by the flavonoid-enriched fraction (FEF) extracted from leaves, by strictly following the procedures set in Organization for Economic Co-operation and Development (OECD) Guidelines No.

View Article and Find Full Text PDF

Targeted insertion of heterogenous DNA using Cas9-gRNA ribonucleoprotein-mediated gene editing in .

Bioengineered

December 2025

Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.

Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.

View Article and Find Full Text PDF

Nanoparticles enhance agricultural applications with their bioactivity, bioavailability, and reactivity. Selenium mitigates the adverse effects of salinity on plant growth, boosting antioxidant defense, metabolism, and resilience to abiotic stress. Our study applied selenium nanoparticles to mitigate salinity-induced damage and support plant growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!